![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafvb | Structured version Visualization version GIF version |
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6274. (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
fnbrafvb | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndm 6028 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
2 | eleq2 2719 | . . . . . . . 8 ⊢ (𝐴 = dom 𝐹 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) | |
3 | 2 | eqcoms 2659 | . . . . . . 7 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ dom 𝐹)) |
4 | 3 | biimpd 219 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) |
6 | 5 | imp 444 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ dom 𝐹) |
7 | snssi 4371 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → {𝐵} ⊆ 𝐴) | |
8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {𝐵} ⊆ 𝐴) |
9 | fnssresb 6041 | . . . . . . 7 ⊢ (𝐹 Fn 𝐴 → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) | |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹 ↾ {𝐵}) Fn {𝐵} ↔ {𝐵} ⊆ 𝐴)) |
11 | 8, 10 | mpbird 247 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹 ↾ {𝐵}) Fn {𝐵}) |
12 | fnfun 6026 | . . . . 5 ⊢ ((𝐹 ↾ {𝐵}) Fn {𝐵} → Fun (𝐹 ↾ {𝐵})) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → Fun (𝐹 ↾ {𝐵})) |
14 | df-dfat 41517 | . . . . 5 ⊢ (𝐹 defAt 𝐵 ↔ (𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵}))) | |
15 | afvfundmfveq 41539 | . . . . 5 ⊢ (𝐹 defAt 𝐵 → (𝐹'''𝐵) = (𝐹‘𝐵)) | |
16 | 14, 15 | sylbir 225 | . . . 4 ⊢ ((𝐵 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐵})) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
17 | 6, 13, 16 | syl2anc 694 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹'''𝐵) = (𝐹‘𝐵)) |
18 | 17 | eqeq1d 2653 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) |
19 | fnbrfvb 6274 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | |
20 | 18, 19 | bitrd 268 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹'''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 {csn 4210 class class class wbr 4685 dom cdm 5143 ↾ cres 5145 Fun wfun 5920 Fn wfn 5921 ‘cfv 5926 defAt wdfat 41514 '''cafv 41515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-res 5155 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-dfat 41517 df-afv 41518 |
This theorem is referenced by: fnopafvb 41556 funbrafvb 41557 dfafn5a 41561 |
Copyright terms: Public domain | W3C validator |