![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fn0 | Structured version Visualization version GIF version |
Description: A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fn0 | ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6027 | . . 3 ⊢ (𝐹 Fn ∅ → Rel 𝐹) | |
2 | fndm 6028 | . . 3 ⊢ (𝐹 Fn ∅ → dom 𝐹 = ∅) | |
3 | reldm0 5375 | . . . 4 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ dom 𝐹 = ∅)) | |
4 | 3 | biimpar 501 | . . 3 ⊢ ((Rel 𝐹 ∧ dom 𝐹 = ∅) → 𝐹 = ∅) |
5 | 1, 2, 4 | syl2anc 694 | . 2 ⊢ (𝐹 Fn ∅ → 𝐹 = ∅) |
6 | fun0 5992 | . . . 4 ⊢ Fun ∅ | |
7 | dm0 5371 | . . . 4 ⊢ dom ∅ = ∅ | |
8 | df-fn 5929 | . . . 4 ⊢ (∅ Fn ∅ ↔ (Fun ∅ ∧ dom ∅ = ∅)) | |
9 | 6, 7, 8 | mpbir2an 975 | . . 3 ⊢ ∅ Fn ∅ |
10 | fneq1 6017 | . . 3 ⊢ (𝐹 = ∅ → (𝐹 Fn ∅ ↔ ∅ Fn ∅)) | |
11 | 9, 10 | mpbiri 248 | . 2 ⊢ (𝐹 = ∅ → 𝐹 Fn ∅) |
12 | 5, 11 | impbii 199 | 1 ⊢ (𝐹 Fn ∅ ↔ 𝐹 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∅c0 3948 dom cdm 5143 Rel wrel 5148 Fun wfun 5920 Fn wfn 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-fun 5928 df-fn 5929 |
This theorem is referenced by: mpt0 6059 f0 6124 f00 6125 f0bi 6126 f1o00 6209 fo00 6210 tpos0 7427 ixp0x 7978 0fz1 12399 hashf1 13279 fuchom 16668 grpinvfvi 17510 mulgfval 17589 mulgfvi 17592 symgplusg 17855 0frgp 18238 invrfval 18719 psrvscafval 19438 tmdgsum 21946 deg1fvi 23890 hon0 28780 fnchoice 39502 dvnprodlem3 40481 |
Copyright terms: Public domain | W3C validator |