MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmval Structured version   Visualization version   GIF version

Theorem fmval 21967
Description: Introduce a function that takes a function from a filtered domain to a set and produces a filter which consists of supersets of images of filter elements. The functions which are dealt with by this function are similar to nets in topology. For example, suppose we have a sequence filtered by the filter generated by its tails under the usual positive integer ordering. Then the elements of this filter are precisely the supersets of tails of this sequence. Under this definition, it is not too difficult to see that the limit of a function in the filter sense captures the notion of convergence of a sequence. As a result, the notion of a filter generalizes many ideas associated with sequences, and this function is one way to make that relationship precise in Metamath. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmval ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐹   𝑦,𝑋   𝑦,𝑌   𝑦,𝐴

Proof of Theorem fmval
Dummy variables 𝑓 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fm 21962 . . . . 5 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))))
21a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))))))
3 dmeq 5462 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43fveq2d 6336 . . . . . . 7 (𝑓 = 𝐹 → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
54adantl 467 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (fBas‘dom 𝑓) = (fBas‘dom 𝐹))
6 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
7 imaeq1 5602 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
87mpteq2dv 4879 . . . . . . . 8 (𝑓 = 𝐹 → (𝑦𝑏 ↦ (𝑓𝑦)) = (𝑦𝑏 ↦ (𝐹𝑦)))
98rneqd 5491 . . . . . . 7 (𝑓 = 𝐹 → ran (𝑦𝑏 ↦ (𝑓𝑦)) = ran (𝑦𝑏 ↦ (𝐹𝑦)))
106, 9oveqan12d 6812 . . . . . 6 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦))) = (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
115, 10mpteq12dv 4867 . . . . 5 ((𝑥 = 𝑋𝑓 = 𝐹) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
12 fdm 6191 . . . . . . . 8 (𝐹:𝑌𝑋 → dom 𝐹 = 𝑌)
1312fveq2d 6336 . . . . . . 7 (𝐹:𝑌𝑋 → (fBas‘dom 𝐹) = (fBas‘𝑌))
1413mpteq1d 4872 . . . . . 6 (𝐹:𝑌𝑋 → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
15143ad2ant3 1129 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘dom 𝐹) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
1611, 15sylan9eqr 2827 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥 = 𝑋𝑓 = 𝐹)) → (𝑏 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑦𝑏 ↦ (𝑓𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
17 elex 3364 . . . . 5 (𝑋𝐴𝑋 ∈ V)
18173ad2ant1 1127 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ V)
19 simp3 1132 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
20 elfvdm 6361 . . . . . 6 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
21203ad2ant2 1128 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑌 ∈ dom fBas)
22 simp1 1130 . . . . 5 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋𝐴)
23 fex2 7268 . . . . 5 ((𝐹:𝑌𝑋𝑌 ∈ dom fBas ∧ 𝑋𝐴) → 𝐹 ∈ V)
2419, 21, 22, 23syl3anc 1476 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹 ∈ V)
25 fvex 6342 . . . . . 6 (fBas‘𝑌) ∈ V
2625mptex 6630 . . . . 5 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V
2726a1i 11 . . . 4 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) ∈ V)
282, 16, 18, 24, 27ovmpt2d 6935 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑋 FilMap 𝐹) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))))
2928fveq1d 6334 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵))
30 mpteq1 4871 . . . . . 6 (𝑏 = 𝐵 → (𝑦𝑏 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦)))
3130rneqd 5491 . . . . 5 (𝑏 = 𝐵 → ran (𝑦𝑏 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦)))
3231oveq2d 6809 . . . 4 (𝑏 = 𝐵 → (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
33 eqid 2771 . . . 4 (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦)))) = (𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))
34 ovex 6823 . . . 4 (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ V
3532, 33, 34fvmpt 6424 . . 3 (𝐵 ∈ (fBas‘𝑌) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
36353ad2ant2 1128 . 2 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑏 ∈ (fBas‘𝑌) ↦ (𝑋filGenran (𝑦𝑏 ↦ (𝐹𝑦))))‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
3729, 36eqtrd 2805 1 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  cmpt 4863  dom cdm 5249  ran crn 5250  cima 5252  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795  fBascfbas 19949  filGencfg 19950   FilMap cfm 21957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-fm 21962
This theorem is referenced by:  fmfil  21968  fmss  21970  elfm  21971  ucnextcn  22328  fmcfil  23289
  Copyright terms: Public domain W3C validator