Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmuldfeqlem1 Structured version   Visualization version   GIF version

Theorem fmuldfeqlem1 40132
Description: induction step for the proof of fmuldfeq 40133. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmuldfeqlem1.1 𝑓𝜑
fmuldfeqlem1.2 𝑔𝜑
fmuldfeqlem1.3 𝑡𝑌
fmuldfeqlem1.5 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmuldfeqlem1.6 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
fmuldfeqlem1.7 (𝜑𝑇 ∈ V)
fmuldfeqlem1.8 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmuldfeqlem1.9 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
fmuldfeqlem1.10 (𝜑𝑁 ∈ (1...𝑀))
fmuldfeqlem1.11 (𝜑 → (𝑁 + 1) ∈ (1...𝑀))
fmuldfeqlem1.12 (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑁))
fmuldfeqlem1.13 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
Assertion
Ref Expression
fmuldfeqlem1 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑁 + 1)))
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝑓,𝑁,𝑡   𝑈,𝑓,𝑡   𝑓,𝑌,𝑔   𝑡,𝑖,𝑈   𝑖,𝑀
Allowed substitution hints:   𝜑(𝑡,𝑓,𝑔,𝑖)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝑇(𝑖)   𝑈(𝑔)   𝐹(𝑡,𝑓,𝑔,𝑖)   𝑀(𝑡,𝑓,𝑔)   𝑁(𝑔,𝑖)   𝑌(𝑡,𝑖)

Proof of Theorem fmuldfeqlem1
Dummy variables 𝑙 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6718 . . . . . . . 8 (1...𝑀) ∈ V
21mptex 6527 . . . . . . 7 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V
3 fmuldfeqlem1.6 . . . . . . . 8 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
43fvmpt2 6330 . . . . . . 7 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
52, 4mpan2 707 . . . . . 6 (𝑡𝑇 → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6 fveq2 6229 . . . . . . . 8 (𝑖 = 𝑗 → (𝑈𝑖) = (𝑈𝑗))
76fveq1d 6231 . . . . . . 7 (𝑖 = 𝑗 → ((𝑈𝑖)‘𝑡) = ((𝑈𝑗)‘𝑡))
87cbvmptv 4783 . . . . . 6 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑗 ∈ (1...𝑀) ↦ ((𝑈𝑗)‘𝑡))
95, 8syl6eq 2701 . . . . 5 (𝑡𝑇 → (𝐹𝑡) = (𝑗 ∈ (1...𝑀) ↦ ((𝑈𝑗)‘𝑡)))
109adantl 481 . . . 4 ((𝜑𝑡𝑇) → (𝐹𝑡) = (𝑗 ∈ (1...𝑀) ↦ ((𝑈𝑗)‘𝑡)))
11 fveq2 6229 . . . . . 6 (𝑗 = (𝑁 + 1) → (𝑈𝑗) = (𝑈‘(𝑁 + 1)))
1211fveq1d 6231 . . . . 5 (𝑗 = (𝑁 + 1) → ((𝑈𝑗)‘𝑡) = ((𝑈‘(𝑁 + 1))‘𝑡))
1312adantl 481 . . . 4 (((𝜑𝑡𝑇) ∧ 𝑗 = (𝑁 + 1)) → ((𝑈𝑗)‘𝑡) = ((𝑈‘(𝑁 + 1))‘𝑡))
14 fmuldfeqlem1.11 . . . . 5 (𝜑 → (𝑁 + 1) ∈ (1...𝑀))
1514adantr 480 . . . 4 ((𝜑𝑡𝑇) → (𝑁 + 1) ∈ (1...𝑀))
16 fmuldfeqlem1.8 . . . . . . 7 (𝜑𝑈:(1...𝑀)⟶𝑌)
1716, 14ffvelrnd 6400 . . . . . 6 (𝜑 → (𝑈‘(𝑁 + 1)) ∈ 𝑌)
1817ancli 573 . . . . . 6 (𝜑 → (𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌))
19 nfcv 2793 . . . . . . 7 𝑓(𝑈‘(𝑁 + 1))
20 fmuldfeqlem1.1 . . . . . . . . 9 𝑓𝜑
21 nfv 1883 . . . . . . . . 9 𝑓(𝑈‘(𝑁 + 1)) ∈ 𝑌
2220, 21nfan 1868 . . . . . . . 8 𝑓(𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌)
23 nfv 1883 . . . . . . . 8 𝑓(𝑈‘(𝑁 + 1)):𝑇⟶ℝ
2422, 23nfim 1865 . . . . . . 7 𝑓((𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌) → (𝑈‘(𝑁 + 1)):𝑇⟶ℝ)
25 eleq1 2718 . . . . . . . . 9 (𝑓 = (𝑈‘(𝑁 + 1)) → (𝑓𝑌 ↔ (𝑈‘(𝑁 + 1)) ∈ 𝑌))
2625anbi2d 740 . . . . . . . 8 (𝑓 = (𝑈‘(𝑁 + 1)) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌)))
27 feq1 6064 . . . . . . . 8 (𝑓 = (𝑈‘(𝑁 + 1)) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘(𝑁 + 1)):𝑇⟶ℝ))
2826, 27imbi12d 333 . . . . . . 7 (𝑓 = (𝑈‘(𝑁 + 1)) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌) → (𝑈‘(𝑁 + 1)):𝑇⟶ℝ)))
29 fmuldfeqlem1.13 . . . . . . 7 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
3019, 24, 28, 29vtoclgf 3295 . . . . . 6 ((𝑈‘(𝑁 + 1)) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘(𝑁 + 1)) ∈ 𝑌) → (𝑈‘(𝑁 + 1)):𝑇⟶ℝ))
3117, 18, 30sylc 65 . . . . 5 (𝜑 → (𝑈‘(𝑁 + 1)):𝑇⟶ℝ)
3231ffvelrnda 6399 . . . 4 ((𝜑𝑡𝑇) → ((𝑈‘(𝑁 + 1))‘𝑡) ∈ ℝ)
3310, 13, 15, 32fvmptd 6327 . . 3 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘(𝑁 + 1)) = ((𝑈‘(𝑁 + 1))‘𝑡))
3433oveq2d 6706 . 2 ((𝜑𝑡𝑇) → ((seq1( · , (𝐹𝑡))‘𝑁) · ((𝐹𝑡)‘(𝑁 + 1))) = ((seq1( · , (𝐹𝑡))‘𝑁) · ((𝑈‘(𝑁 + 1))‘𝑡)))
35 fmuldfeqlem1.10 . . . . 5 (𝜑𝑁 ∈ (1...𝑀))
36 elfzuz 12376 . . . . 5 (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (ℤ‘1))
3735, 36syl 17 . . . 4 (𝜑𝑁 ∈ (ℤ‘1))
38 seqp1 12856 . . . 4 (𝑁 ∈ (ℤ‘1) → (seq1( · , (𝐹𝑡))‘(𝑁 + 1)) = ((seq1( · , (𝐹𝑡))‘𝑁) · ((𝐹𝑡)‘(𝑁 + 1))))
3937, 38syl 17 . . 3 (𝜑 → (seq1( · , (𝐹𝑡))‘(𝑁 + 1)) = ((seq1( · , (𝐹𝑡))‘𝑁) · ((𝐹𝑡)‘(𝑁 + 1))))
4039adantr 480 . 2 ((𝜑𝑡𝑇) → (seq1( · , (𝐹𝑡))‘(𝑁 + 1)) = ((seq1( · , (𝐹𝑡))‘𝑁) · ((𝐹𝑡)‘(𝑁 + 1))))
41 seqp1 12856 . . . . . 6 (𝑁 ∈ (ℤ‘1) → (seq1(𝑃, 𝑈)‘(𝑁 + 1)) = ((seq1(𝑃, 𝑈)‘𝑁)𝑃(𝑈‘(𝑁 + 1))))
4237, 41syl 17 . . . . 5 (𝜑 → (seq1(𝑃, 𝑈)‘(𝑁 + 1)) = ((seq1(𝑃, 𝑈)‘𝑁)𝑃(𝑈‘(𝑁 + 1))))
43 fmuldfeqlem1.5 . . . . . . . 8 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
44 nfcv 2793 . . . . . . . . 9 (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
45 nfcv 2793 . . . . . . . . 9 𝑙(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
46 nfcv 2793 . . . . . . . . 9 𝑓(𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡)))
47 nfcv 2793 . . . . . . . . 9 𝑔(𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡)))
48 fveq1 6228 . . . . . . . . . . 11 (𝑓 = → (𝑓𝑡) = (𝑡))
49 fveq1 6228 . . . . . . . . . . 11 (𝑔 = 𝑙 → (𝑔𝑡) = (𝑙𝑡))
5048, 49oveqan12d 6709 . . . . . . . . . 10 ((𝑓 = 𝑔 = 𝑙) → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
5150mpteq2dv 4778 . . . . . . . . 9 ((𝑓 = 𝑔 = 𝑙) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
5244, 45, 46, 47, 51cbvmpt2 6776 . . . . . . . 8 (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))) = (𝑌, 𝑙𝑌 ↦ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
5343, 52eqtri 2673 . . . . . . 7 𝑃 = (𝑌, 𝑙𝑌 ↦ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
5453a1i 11 . . . . . 6 (𝜑𝑃 = (𝑌, 𝑙𝑌 ↦ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡)))))
55 nfcv 2793 . . . . . . . . . . . 12 𝑡1
56 fmuldfeqlem1.3 . . . . . . . . . . . . . 14 𝑡𝑌
57 nfmpt1 4780 . . . . . . . . . . . . . 14 𝑡(𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡)))
5856, 56, 57nfmpt2 6766 . . . . . . . . . . . . 13 𝑡(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
5943, 58nfcxfr 2791 . . . . . . . . . . . 12 𝑡𝑃
60 nfcv 2793 . . . . . . . . . . . 12 𝑡𝑈
6155, 59, 60nfseq 12851 . . . . . . . . . . 11 𝑡seq1(𝑃, 𝑈)
62 nfcv 2793 . . . . . . . . . . 11 𝑡𝑁
6361, 62nffv 6236 . . . . . . . . . 10 𝑡(seq1(𝑃, 𝑈)‘𝑁)
6463nfeq2 2809 . . . . . . . . 9 𝑡 = (seq1(𝑃, 𝑈)‘𝑁)
65 nfv 1883 . . . . . . . . 9 𝑡 𝑙 = (𝑈‘(𝑁 + 1))
6664, 65nfan 1868 . . . . . . . 8 𝑡( = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1)))
67 fveq1 6228 . . . . . . . . . 10 ( = (seq1(𝑃, 𝑈)‘𝑁) → (𝑡) = ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡))
6867ad2antrr 762 . . . . . . . . 9 ((( = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) ∧ 𝑡𝑇) → (𝑡) = ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡))
69 fveq1 6228 . . . . . . . . . 10 (𝑙 = (𝑈‘(𝑁 + 1)) → (𝑙𝑡) = ((𝑈‘(𝑁 + 1))‘𝑡))
7069ad2antlr 763 . . . . . . . . 9 ((( = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) ∧ 𝑡𝑇) → (𝑙𝑡) = ((𝑈‘(𝑁 + 1))‘𝑡))
7168, 70oveq12d 6708 . . . . . . . 8 ((( = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) ∧ 𝑡𝑇) → ((𝑡) · (𝑙𝑡)) = (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)))
7266, 71mpteq2da 4776 . . . . . . 7 (( = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1))) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) = (𝑡𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))))
7372adantl 481 . . . . . 6 ((𝜑 ∧ ( = (seq1(𝑃, 𝑈)‘𝑁) ∧ 𝑙 = (𝑈‘(𝑁 + 1)))) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) = (𝑡𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))))
74 eqid 2651 . . . . . . 7 (seq1(𝑃, 𝑈)‘𝑁) = (seq1(𝑃, 𝑈)‘𝑁)
75 3simpc 1080 . . . . . . . 8 ((𝜑𝑌𝑙𝑌) → (𝑌𝑙𝑌))
76 nfcv 2793 . . . . . . . . 9 𝑓
77 nfcv 2793 . . . . . . . . 9 𝑔
78 nfcv 2793 . . . . . . . . 9 𝑔𝑙
79 nfv 1883 . . . . . . . . . . 11 𝑓 𝑌
80 nfv 1883 . . . . . . . . . . 11 𝑓 𝑔𝑌
8120, 79, 80nf3an 1871 . . . . . . . . . 10 𝑓(𝜑𝑌𝑔𝑌)
82 nfv 1883 . . . . . . . . . 10 𝑓(𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌
8381, 82nfim 1865 . . . . . . . . 9 𝑓((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌)
84 fmuldfeqlem1.2 . . . . . . . . . . 11 𝑔𝜑
85 nfv 1883 . . . . . . . . . . 11 𝑔 𝑌
86 nfv 1883 . . . . . . . . . . 11 𝑔 𝑙𝑌
8784, 85, 86nf3an 1871 . . . . . . . . . 10 𝑔(𝜑𝑌𝑙𝑌)
88 nfv 1883 . . . . . . . . . 10 𝑔(𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌
8987, 88nfim 1865 . . . . . . . . 9 𝑔((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
90 eleq1 2718 . . . . . . . . . . 11 (𝑓 = → (𝑓𝑌𝑌))
91903anbi2d 1444 . . . . . . . . . 10 (𝑓 = → ((𝜑𝑓𝑌𝑔𝑌) ↔ (𝜑𝑌𝑔𝑌)))
9248oveq1d 6705 . . . . . . . . . . . 12 (𝑓 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑔𝑡)))
9392mpteq2dv 4778 . . . . . . . . . . 11 (𝑓 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))))
9493eleq1d 2715 . . . . . . . . . 10 (𝑓 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌))
9591, 94imbi12d 333 . . . . . . . . 9 (𝑓 = → (((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌)))
96 eleq1 2718 . . . . . . . . . . 11 (𝑔 = 𝑙 → (𝑔𝑌𝑙𝑌))
97963anbi3d 1445 . . . . . . . . . 10 (𝑔 = 𝑙 → ((𝜑𝑌𝑔𝑌) ↔ (𝜑𝑌𝑙𝑌)))
9849oveq2d 6706 . . . . . . . . . . . 12 (𝑔 = 𝑙 → ((𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
9998mpteq2dv 4778 . . . . . . . . . . 11 (𝑔 = 𝑙 → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
10099eleq1d 2715 . . . . . . . . . 10 (𝑔 = 𝑙 → ((𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
10197, 100imbi12d 333 . . . . . . . . 9 (𝑔 = 𝑙 → (((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)))
102 fmuldfeqlem1.9 . . . . . . . . 9 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
10376, 77, 78, 83, 89, 95, 101, 102vtocl2gf 3299 . . . . . . . 8 ((𝑌𝑙𝑌) → ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
10475, 103mpcom 38 . . . . . . 7 ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
105 fmuldfeqlem1.7 . . . . . . 7 (𝜑𝑇 ∈ V)
10653, 74, 35, 16, 104, 105fmulcl 40131 . . . . . 6 (𝜑 → (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)
107 mptexg 6525 . . . . . . 7 (𝑇 ∈ V → (𝑡𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))) ∈ V)
108105, 107syl 17 . . . . . 6 (𝜑 → (𝑡𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))) ∈ V)
10954, 73, 106, 17, 108ovmpt2d 6830 . . . . 5 (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)𝑃(𝑈‘(𝑁 + 1))) = (𝑡𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))))
11042, 109eqtrd 2685 . . . 4 (𝜑 → (seq1(𝑃, 𝑈)‘(𝑁 + 1)) = (𝑡𝑇 ↦ (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡))))
111106ancli 573 . . . . . . 7 (𝜑 → (𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌))
112 nfcv 2793 . . . . . . . . . 10 𝑓1
113 nfmpt21 6764 . . . . . . . . . . 11 𝑓(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
11443, 113nfcxfr 2791 . . . . . . . . . 10 𝑓𝑃
115 nfcv 2793 . . . . . . . . . 10 𝑓𝑈
116112, 114, 115nfseq 12851 . . . . . . . . 9 𝑓seq1(𝑃, 𝑈)
117 nfcv 2793 . . . . . . . . 9 𝑓𝑁
118116, 117nffv 6236 . . . . . . . 8 𝑓(seq1(𝑃, 𝑈)‘𝑁)
119118nfel1 2808 . . . . . . . . . 10 𝑓(seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌
12020, 119nfan 1868 . . . . . . . . 9 𝑓(𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)
121 nfcv 2793 . . . . . . . . . 10 𝑓𝑇
122 nfcv 2793 . . . . . . . . . 10 𝑓
123118, 121, 122nff 6079 . . . . . . . . 9 𝑓(seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ
124120, 123nfim 1865 . . . . . . . 8 𝑓((𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) → (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ)
125 eleq1 2718 . . . . . . . . . 10 (𝑓 = (seq1(𝑃, 𝑈)‘𝑁) → (𝑓𝑌 ↔ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌))
126125anbi2d 740 . . . . . . . . 9 (𝑓 = (seq1(𝑃, 𝑈)‘𝑁) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)))
127 feq1 6064 . . . . . . . . 9 (𝑓 = (seq1(𝑃, 𝑈)‘𝑁) → (𝑓:𝑇⟶ℝ ↔ (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ))
128126, 127imbi12d 333 . . . . . . . 8 (𝑓 = (seq1(𝑃, 𝑈)‘𝑁) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) → (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ)))
129118, 124, 128, 29vtoclgf 3295 . . . . . . 7 ((seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌 → ((𝜑 ∧ (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌) → (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ))
130106, 111, 129sylc 65 . . . . . 6 (𝜑 → (seq1(𝑃, 𝑈)‘𝑁):𝑇⟶ℝ)
131130ffvelrnda 6399 . . . . 5 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) ∈ ℝ)
132131, 32remulcld 10108 . . . 4 ((𝜑𝑡𝑇) → (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)) ∈ ℝ)
133110, 132fvmpt2d 6332 . . 3 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)))
134 fmuldfeqlem1.12 . . . . 5 (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑁))
135134oveq1d 6705 . . . 4 (𝜑 → (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)) = ((seq1( · , (𝐹𝑡))‘𝑁) · ((𝑈‘(𝑁 + 1))‘𝑡)))
136135adantr 480 . . 3 ((𝜑𝑡𝑇) → (((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) · ((𝑈‘(𝑁 + 1))‘𝑡)) = ((seq1( · , (𝐹𝑡))‘𝑁) · ((𝑈‘(𝑁 + 1))‘𝑡)))
137133, 136eqtrd 2685 . 2 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = ((seq1( · , (𝐹𝑡))‘𝑁) · ((𝑈‘(𝑁 + 1))‘𝑡)))
13834, 40, 1373eqtr4rd 2696 1 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wnf 1748  wcel 2030  wnfc 2780  Vcvv 3231  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  cr 9973  1c1 9975   + caddc 9977   · cmul 9979  cuz 11725  ...cfz 12364  seqcseq 12841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-seq 12842
This theorem is referenced by:  fmuldfeq  40133
  Copyright terms: Public domain W3C validator