Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmulcl Structured version   Visualization version   GIF version

Theorem fmulcl 40308
 Description: If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmulcl.1 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmulcl.2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
fmulcl.4 (𝜑𝑁 ∈ (1...𝑀))
fmulcl.5 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmulcl.6 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
fmulcl.7 (𝜑𝑇 ∈ V)
Assertion
Ref Expression
fmulcl (𝜑𝑋𝑌)
Distinct variable groups:   𝑓,𝑔,𝑡,𝑇   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   𝜑(𝑡)   𝑃(𝑡,𝑓,𝑔)   𝑈(𝑡,𝑓,𝑔)   𝑀(𝑡,𝑓,𝑔)   𝑁(𝑡,𝑓,𝑔)   𝑋(𝑡,𝑓,𝑔)   𝑌(𝑡)

Proof of Theorem fmulcl
Dummy variables 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmulcl.2 . 2 𝑋 = (seq1(𝑃, 𝑈)‘𝑁)
2 fmulcl.4 . . . 4 (𝜑𝑁 ∈ (1...𝑀))
3 elfzuz 12523 . . . 4 (𝑁 ∈ (1...𝑀) → 𝑁 ∈ (ℤ‘1))
42, 3syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘1))
5 elfzuz3 12524 . . . . . 6 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ (ℤ𝑁))
6 fzss2 12566 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...𝑀))
72, 5, 63syl 18 . . . . 5 (𝜑 → (1...𝑁) ⊆ (1...𝑀))
87sselda 3736 . . . 4 ((𝜑 ∈ (1...𝑁)) → ∈ (1...𝑀))
9 fmulcl.5 . . . . 5 (𝜑𝑈:(1...𝑀)⟶𝑌)
109ffvelrnda 6514 . . . 4 ((𝜑 ∈ (1...𝑀)) → (𝑈) ∈ 𝑌)
118, 10syldan 488 . . 3 ((𝜑 ∈ (1...𝑁)) → (𝑈) ∈ 𝑌)
12 simprl 811 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑌)
13 simprr 813 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑙𝑌)
14 fmulcl.7 . . . . . . 7 (𝜑𝑇 ∈ V)
1514adantr 472 . . . . . 6 ((𝜑 ∧ (𝑌𝑙𝑌)) → 𝑇 ∈ V)
16 mptexg 6640 . . . . . 6 (𝑇 ∈ V → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
1715, 16syl 17 . . . . 5 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V)
18 fveq1 6343 . . . . . . . 8 (𝑓 = → (𝑓𝑡) = (𝑡))
19 fveq1 6343 . . . . . . . 8 (𝑔 = 𝑙 → (𝑔𝑡) = (𝑙𝑡))
2018, 19oveqan12d 6824 . . . . . . 7 ((𝑓 = 𝑔 = 𝑙) → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
2120mpteq2dv 4889 . . . . . 6 ((𝑓 = 𝑔 = 𝑙) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
22 fmulcl.1 . . . . . 6 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
2321, 22ovmpt2ga 6947 . . . . 5 ((𝑌𝑙𝑌 ∧ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ V) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
2412, 13, 17, 23syl3anc 1473 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
25 3simpc 1146 . . . . . 6 ((𝜑𝑌𝑙𝑌) → (𝑌𝑙𝑌))
26 eleq1w 2814 . . . . . . . . 9 (𝑓 = → (𝑓𝑌𝑌))
27263anbi2d 1545 . . . . . . . 8 (𝑓 = → ((𝜑𝑓𝑌𝑔𝑌) ↔ (𝜑𝑌𝑔𝑌)))
2818oveq1d 6820 . . . . . . . . . 10 (𝑓 = → ((𝑓𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑔𝑡)))
2928mpteq2dv 4889 . . . . . . . . 9 (𝑓 = → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))))
3029eleq1d 2816 . . . . . . . 8 (𝑓 = → ((𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌))
3127, 30imbi12d 333 . . . . . . 7 (𝑓 = → (((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌)))
32 eleq1w 2814 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑔𝑌𝑙𝑌))
33323anbi3d 1546 . . . . . . . 8 (𝑔 = 𝑙 → ((𝜑𝑌𝑔𝑌) ↔ (𝜑𝑌𝑙𝑌)))
3419oveq2d 6821 . . . . . . . . . 10 (𝑔 = 𝑙 → ((𝑡) · (𝑔𝑡)) = ((𝑡) · (𝑙𝑡)))
3534mpteq2dv 4889 . . . . . . . . 9 (𝑔 = 𝑙 → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) = (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))))
3635eleq1d 2816 . . . . . . . 8 (𝑔 = 𝑙 → ((𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌 ↔ (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
3733, 36imbi12d 333 . . . . . . 7 (𝑔 = 𝑙 → (((𝜑𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑔𝑡))) ∈ 𝑌) ↔ ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)))
38 fmulcl.6 . . . . . . 7 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
3931, 37, 38vtocl2g 3402 . . . . . 6 ((𝑌𝑙𝑌) → ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌))
4025, 39mpcom 38 . . . . 5 ((𝜑𝑌𝑙𝑌) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
41403expb 1113 . . . 4 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑡𝑇 ↦ ((𝑡) · (𝑙𝑡))) ∈ 𝑌)
4224, 41eqeltrd 2831 . . 3 ((𝜑 ∧ (𝑌𝑙𝑌)) → (𝑃𝑙) ∈ 𝑌)
434, 11, 42seqcl 13007 . 2 (𝜑 → (seq1(𝑃, 𝑈)‘𝑁) ∈ 𝑌)
441, 43syl5eqel 2835 1 (𝜑𝑋𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1624   ∈ wcel 2131  Vcvv 3332   ⊆ wss 3707   ↦ cmpt 4873  ⟶wf 6037  ‘cfv 6041  (class class class)co 6805   ↦ cmpt2 6807  1c1 10121   · cmul 10125  ℤ≥cuz 11871  ...cfz 12511  seqcseq 12987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-fz 12512  df-seq 12988 This theorem is referenced by:  fmuldfeqlem1  40309  stoweidlem51  40763
 Copyright terms: Public domain W3C validator