Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucndlem Structured version   Visualization version   GIF version

Theorem fmucndlem 22314
 Description: Lemma for fmucnd 22315. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
fmucndlem ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦

Proof of Theorem fmucndlem
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5262 . . 3 ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ran ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴))
2 simpr 471 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → 𝐴𝑋)
3 resmpt2 6904 . . . . 5 ((𝐴𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
42, 3sylancom 568 . . . 4 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
54rneqd 5491 . . 3 ((𝐹 Fn 𝑋𝐴𝑋) → ran ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↾ (𝐴 × 𝐴)) = ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
61, 5syl5eq 2816 . 2 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩))
7 vex 3352 . . . . . . . . . . . . 13 𝑥 ∈ V
8 vex 3352 . . . . . . . . . . . . 13 𝑦 ∈ V
97, 8op1std 7324 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (1st𝑝) = 𝑥)
109fveq2d 6336 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(1st𝑝)) = (𝐹𝑥))
117, 8op2ndd 7325 . . . . . . . . . . . 12 (𝑝 = ⟨𝑥, 𝑦⟩ → (2nd𝑝) = 𝑦)
1211fveq2d 6336 . . . . . . . . . . 11 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝐹‘(2nd𝑝)) = (𝐹𝑦))
1310, 12opeq12d 4545 . . . . . . . . . 10 (𝑝 = ⟨𝑥, 𝑦⟩ → ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
1413mpt2mpt 6898 . . . . . . . . 9 (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
1514eqcomi 2779 . . . . . . . 8 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
1615rneqi 5490 . . . . . . 7 ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = ran (𝑝 ∈ (𝐴 × 𝐴) ↦ ⟨(𝐹‘(1st𝑝)), (𝐹‘(2nd𝑝))⟩)
17 fvexd 6344 . . . . . . 7 ((⊤ ∧ 𝑝 ∈ (𝐴 × 𝐴)) → (𝐹‘(1st𝑝)) ∈ V)
18 fvexd 6344 . . . . . . 7 ((⊤ ∧ 𝑝 ∈ (𝐴 × 𝐴)) → (𝐹‘(2nd𝑝)) ∈ V)
1916, 17, 18fliftrel 6700 . . . . . 6 (⊤ → ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ⊆ (V × V))
2019trud 1640 . . . . 5 ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ⊆ (V × V)
2120sseli 3746 . . . 4 (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) → 𝑝 ∈ (V × V))
2221adantl 467 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)) → 𝑝 ∈ (V × V))
23 xpss 5265 . . . . 5 ((𝐹𝐴) × (𝐹𝐴)) ⊆ (V × V)
2423sseli 3746 . . . 4 (𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴)) → 𝑝 ∈ (V × V))
2524adantl 467 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴))) → 𝑝 ∈ (V × V))
26 fvelimab 6395 . . . . . . . 8 ((𝐹 Fn 𝑋𝐴𝑋) → ((1st𝑝) ∈ (𝐹𝐴) ↔ ∃𝑥𝐴 (𝐹𝑥) = (1st𝑝)))
27 fvelimab 6395 . . . . . . . 8 ((𝐹 Fn 𝑋𝐴𝑋) → ((2nd𝑝) ∈ (𝐹𝐴) ↔ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
2826, 27anbi12d 608 . . . . . . 7 ((𝐹 Fn 𝑋𝐴𝑋) → (((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴)) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝))))
29 eqid 2770 . . . . . . . . 9 (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
30 opex 5060 . . . . . . . . 9 ⟨(𝐹𝑥), (𝐹𝑦)⟩ ∈ V
3129, 30elrnmpt2 6919 . . . . . . . 8 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ∃𝑥𝐴𝑦𝐴 ⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩)
32 eqcom 2777 . . . . . . . . . 10 (⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
33 fvex 6342 . . . . . . . . . . 11 (1st𝑝) ∈ V
34 fvex 6342 . . . . . . . . . . 11 (2nd𝑝) ∈ V
3533, 34opth2 5076 . . . . . . . . . 10 (⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩ ↔ ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
3632, 35bitri 264 . . . . . . . . 9 (⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
37362rexbii 3189 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ⟨(1st𝑝), (2nd𝑝)⟩ = ⟨(𝐹𝑥), (𝐹𝑦)⟩ ↔ ∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)))
38 reeanv 3254 . . . . . . . 8 (∃𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (1st𝑝) ∧ (𝐹𝑦) = (2nd𝑝)) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
3931, 37, 383bitri 286 . . . . . . 7 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ (∃𝑥𝐴 (𝐹𝑥) = (1st𝑝) ∧ ∃𝑦𝐴 (𝐹𝑦) = (2nd𝑝)))
4028, 39syl6rbbr 279 . . . . . 6 ((𝐹 Fn 𝑋𝐴𝑋) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴))))
41 opelxp 5286 . . . . . 6 (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴)) ↔ ((1st𝑝) ∈ (𝐹𝐴) ∧ (2nd𝑝) ∈ (𝐹𝐴)))
4240, 41syl6bbr 278 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
4342adantr 466 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
44 1st2nd2 7353 . . . . . 6 (𝑝 ∈ (V × V) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4544adantl 467 . . . . 5 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
4645eleq1d 2834 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)))
4745eleq1d 2834 . . . 4 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴)) ↔ ⟨(1st𝑝), (2nd𝑝)⟩ ∈ ((𝐹𝐴) × (𝐹𝐴))))
4843, 46, 473bitr4d 300 . . 3 (((𝐹 Fn 𝑋𝐴𝑋) ∧ 𝑝 ∈ (V × V)) → (𝑝 ∈ ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ↔ 𝑝 ∈ ((𝐹𝐴) × (𝐹𝐴))))
4922, 25, 48eqrdav 2769 . 2 ((𝐹 Fn 𝑋𝐴𝑋) → ran (𝑥𝐴, 𝑦𝐴 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = ((𝐹𝐴) × (𝐹𝐴)))
506, 49eqtrd 2804 1 ((𝐹 Fn 𝑋𝐴𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝐴 × 𝐴)) = ((𝐹𝐴) × (𝐹𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630  ⊤wtru 1631   ∈ wcel 2144  ∃wrex 3061  Vcvv 3349   ⊆ wss 3721  ⟨cop 4320   ↦ cmpt 4861   × cxp 5247  ran crn 5250   ↾ cres 5251   “ cima 5252   Fn wfn 6026  ‘cfv 6031   ↦ cmpt2 6794  1st c1st 7312  2nd c2nd 7313 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315 This theorem is referenced by:  fmucnd  22315
 Copyright terms: Public domain W3C validator