MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucnd Structured version   Visualization version   GIF version

Theorem fmucnd 22143
Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.)
Hypotheses
Ref Expression
fmucnd.1 (𝜑𝑈 ∈ (UnifOn‘𝑋))
fmucnd.2 (𝜑𝑉 ∈ (UnifOn‘𝑌))
fmucnd.3 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
fmucnd.4 (𝜑𝐶 ∈ (CauFilu𝑈))
fmucnd.5 𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))
Assertion
Ref Expression
fmucnd (𝜑𝐷 ∈ (CauFilu𝑉))
Distinct variable groups:   𝐶,𝑎   𝐷,𝑎   𝐹,𝑎   𝑉,𝑎   𝑋,𝑎   𝑌,𝑎   𝜑,𝑎
Allowed substitution hint:   𝑈(𝑎)

Proof of Theorem fmucnd
Dummy variables 𝑐 𝑏 𝑣 𝑟 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmucnd.1 . . . 4 (𝜑𝑈 ∈ (UnifOn‘𝑋))
2 fmucnd.4 . . . 4 (𝜑𝐶 ∈ (CauFilu𝑈))
3 cfilufbas 22140 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu𝑈)) → 𝐶 ∈ (fBas‘𝑋))
41, 2, 3syl2anc 694 . . 3 (𝜑𝐶 ∈ (fBas‘𝑋))
5 fmucnd.2 . . . 4 (𝜑𝑉 ∈ (UnifOn‘𝑌))
6 fmucnd.3 . . . 4 (𝜑𝐹 ∈ (𝑈 Cnu𝑉))
7 isucn 22129 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣𝑉𝑟𝑈𝑥𝑋𝑦𝑋 (𝑥𝑟𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
87simprbda 652 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) ∧ 𝐹 ∈ (𝑈 Cnu𝑉)) → 𝐹:𝑋𝑌)
91, 5, 6, 8syl21anc 1365 . . 3 (𝜑𝐹:𝑋𝑌)
105elfvexd 6260 . . 3 (𝜑𝑌 ∈ V)
11 fmucnd.5 . . . 4 𝐷 = ran (𝑎𝐶 ↦ (𝐹𝑎))
1211fbasrn 21735 . . 3 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝐹:𝑋𝑌𝑌 ∈ V) → 𝐷 ∈ (fBas‘𝑌))
134, 9, 10, 12syl3anc 1366 . 2 (𝜑𝐷 ∈ (fBas‘𝑌))
14 simplr 807 . . . . . . . 8 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝑎𝐶)
15 eqid 2651 . . . . . . . 8 (𝐹𝑎) = (𝐹𝑎)
16 imaeq2 5497 . . . . . . . . . 10 (𝑐 = 𝑎 → (𝐹𝑐) = (𝐹𝑎))
1716eqeq2d 2661 . . . . . . . . 9 (𝑐 = 𝑎 → ((𝐹𝑎) = (𝐹𝑐) ↔ (𝐹𝑎) = (𝐹𝑎)))
1817rspcev 3340 . . . . . . . 8 ((𝑎𝐶 ∧ (𝐹𝑎) = (𝐹𝑎)) → ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐))
1914, 15, 18sylancl 695 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐))
20 imaexg 7145 . . . . . . . . 9 (𝐹 ∈ (𝑈 Cnu𝑉) → (𝐹𝑎) ∈ V)
21 eqid 2651 . . . . . . . . . 10 (𝑐𝐶 ↦ (𝐹𝑐)) = (𝑐𝐶 ↦ (𝐹𝑐))
2221elrnmpt 5404 . . . . . . . . 9 ((𝐹𝑎) ∈ V → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
236, 20, 223syl 18 . . . . . . . 8 (𝜑 → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
2423ad3antrrr 766 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)) ↔ ∃𝑐𝐶 (𝐹𝑎) = (𝐹𝑐)))
2519, 24mpbird 247 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → (𝐹𝑎) ∈ ran (𝑐𝐶 ↦ (𝐹𝑐)))
26 imaeq2 5497 . . . . . . . . 9 (𝑎 = 𝑐 → (𝐹𝑎) = (𝐹𝑐))
2726cbvmptv 4783 . . . . . . . 8 (𝑎𝐶 ↦ (𝐹𝑎)) = (𝑐𝐶 ↦ (𝐹𝑐))
2827rneqi 5384 . . . . . . 7 ran (𝑎𝐶 ↦ (𝐹𝑎)) = ran (𝑐𝐶 ↦ (𝐹𝑐))
2911, 28eqtri 2673 . . . . . 6 𝐷 = ran (𝑐𝐶 ↦ (𝐹𝑐))
3025, 29syl6eleqr 2741 . . . . 5 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → (𝐹𝑎) ∈ 𝐷)
31 ffn 6083 . . . . . . . . 9 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
329, 31syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝑋)
3332ad3antrrr 766 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝐹 Fn 𝑋)
34 simplll 813 . . . . . . . 8 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝜑)
35 fbelss 21684 . . . . . . . . 9 ((𝐶 ∈ (fBas‘𝑋) ∧ 𝑎𝐶) → 𝑎𝑋)
364, 35sylan 487 . . . . . . . 8 ((𝜑𝑎𝐶) → 𝑎𝑋)
3734, 14, 36syl2anc 694 . . . . . . 7 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → 𝑎𝑋)
38 fmucndlem 22142 . . . . . . 7 ((𝐹 Fn 𝑋𝑎𝑋) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) = ((𝐹𝑎) × (𝐹𝑎)))
3933, 37, 38syl2anc 694 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) = ((𝐹𝑎) × (𝐹𝑎)))
40 eqid 2651 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
4140mpt2fun 6804 . . . . . . . 8 Fun (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩)
42 funimass2 6010 . . . . . . . 8 ((Fun (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4341, 42mpan 706 . . . . . . 7 ((𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4443adantl 481 . . . . . 6 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ (𝑎 × 𝑎)) ⊆ 𝑣)
4539, 44eqsstr3d 3673 . . . . 5 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣)
46 id 22 . . . . . . . 8 (𝑏 = (𝐹𝑎) → 𝑏 = (𝐹𝑎))
4746sqxpeqd 5175 . . . . . . 7 (𝑏 = (𝐹𝑎) → (𝑏 × 𝑏) = ((𝐹𝑎) × (𝐹𝑎)))
4847sseq1d 3665 . . . . . 6 (𝑏 = (𝐹𝑎) → ((𝑏 × 𝑏) ⊆ 𝑣 ↔ ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣))
4948rspcev 3340 . . . . 5 (((𝐹𝑎) ∈ 𝐷 ∧ ((𝐹𝑎) × (𝐹𝑎)) ⊆ 𝑣) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
5030, 45, 49syl2anc 694 . . . 4 ((((𝜑𝑣𝑉) ∧ 𝑎𝐶) ∧ (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣)) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
511adantr 480 . . . . 5 ((𝜑𝑣𝑉) → 𝑈 ∈ (UnifOn‘𝑋))
522adantr 480 . . . . 5 ((𝜑𝑣𝑉) → 𝐶 ∈ (CauFilu𝑈))
535adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝑉 ∈ (UnifOn‘𝑌))
546adantr 480 . . . . . 6 ((𝜑𝑣𝑉) → 𝐹 ∈ (𝑈 Cnu𝑉))
55 simpr 476 . . . . . 6 ((𝜑𝑣𝑉) → 𝑣𝑉)
56 nfcv 2793 . . . . . . 7 𝑠⟨(𝐹𝑥), (𝐹𝑦)⟩
57 nfcv 2793 . . . . . . 7 𝑡⟨(𝐹𝑥), (𝐹𝑦)⟩
58 nfcv 2793 . . . . . . 7 𝑥⟨(𝐹𝑠), (𝐹𝑡)⟩
59 nfcv 2793 . . . . . . 7 𝑦⟨(𝐹𝑠), (𝐹𝑡)⟩
60 simpl 472 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 𝑡) → 𝑥 = 𝑠)
6160fveq2d 6233 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝐹𝑥) = (𝐹𝑠))
62 simpr 476 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 𝑡) → 𝑦 = 𝑡)
6362fveq2d 6233 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 𝑡) → (𝐹𝑦) = (𝐹𝑡))
6461, 63opeq12d 4441 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 𝑡) → ⟨(𝐹𝑥), (𝐹𝑦)⟩ = ⟨(𝐹𝑠), (𝐹𝑡)⟩)
6556, 57, 58, 59, 64cbvmpt2 6776 . . . . . 6 (𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) = (𝑠𝑋, 𝑡𝑋 ↦ ⟨(𝐹𝑠), (𝐹𝑡)⟩)
6651, 53, 54, 55, 65ucnprima 22133 . . . . 5 ((𝜑𝑣𝑉) → ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) ∈ 𝑈)
67 cfiluexsm 22141 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐶 ∈ (CauFilu𝑈) ∧ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣) ∈ 𝑈) → ∃𝑎𝐶 (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣))
6851, 52, 66, 67syl3anc 1366 . . . 4 ((𝜑𝑣𝑉) → ∃𝑎𝐶 (𝑎 × 𝑎) ⊆ ((𝑥𝑋, 𝑦𝑋 ↦ ⟨(𝐹𝑥), (𝐹𝑦)⟩) “ 𝑣))
6950, 68r19.29a 3107 . . 3 ((𝜑𝑣𝑉) → ∃𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
7069ralrimiva 2995 . 2 (𝜑 → ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)
71 iscfilu 22139 . . 3 (𝑉 ∈ (UnifOn‘𝑌) → (𝐷 ∈ (CauFilu𝑉) ↔ (𝐷 ∈ (fBas‘𝑌) ∧ ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)))
725, 71syl 17 . 2 (𝜑 → (𝐷 ∈ (CauFilu𝑉) ↔ (𝐷 ∈ (fBas‘𝑌) ∧ ∀𝑣𝑉𝑏𝐷 (𝑏 × 𝑏) ⊆ 𝑣)))
7313, 70, 72mpbir2and 977 1 (𝜑𝐷 ∈ (CauFilu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607  cop 4216   class class class wbr 4685  cmpt 4762   × cxp 5141  ccnv 5142  ran crn 5144  cima 5146  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  fBascfbas 19782  UnifOncust 22050   Cnucucn 22126  CauFiluccfilu 22137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-fbas 19791  df-ust 22051  df-ucn 22127  df-cfilu 22138
This theorem is referenced by:  ucnextcn  22155
  Copyright terms: Public domain W3C validator