![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnorec1 | Structured version Visualization version GIF version |
Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtnorec1 | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2nn0 11546 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
2 | fmtno 41970 | . . 3 ⊢ ((𝑁 + 1) ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1)) |
4 | 2nn0 11522 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
5 | nn0expcl 13089 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ0) | |
6 | 4, 5 | mpan 708 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0) |
7 | nn0expcl 13089 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0) | |
8 | 7 | nn0cnd 11566 | . . . . . . 7 ⊢ ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℂ) |
9 | 4, 6, 8 | sylancr 698 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℂ) |
10 | pncan1 10667 | . . . . . 6 ⊢ ((2↑(2↑𝑁)) ∈ ℂ → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁))) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁))) |
12 | 11 | oveq1d 6830 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = ((2↑(2↑𝑁))↑2)) |
13 | 2cnne0 11455 | . . . . 5 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
14 | 6 | nn0zd 11693 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ) |
15 | 2z 11622 | . . . . . 6 ⊢ 2 ∈ ℤ | |
16 | 14, 15 | jctir 562 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) |
17 | expmulz 13121 | . . . . 5 ⊢ (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2)) | |
18 | 13, 16, 17 | sylancr 698 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2)) |
19 | 2cn 11304 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
20 | 2ne0 11326 | . . . . . . 7 ⊢ 2 ≠ 0 | |
21 | nn0z 11613 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
22 | expp1z 13124 | . . . . . . 7 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) | |
23 | 19, 20, 21, 22 | mp3an12i 1577 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
24 | 23 | eqcomd 2767 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) · 2) = (2↑(𝑁 + 1))) |
25 | 24 | oveq2d 6831 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1)))) |
26 | 12, 18, 25 | 3eqtr2rd 2802 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑(𝑁 + 1))) = ((((2↑(2↑𝑁)) + 1) − 1)↑2)) |
27 | 26 | oveq1d 6830 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑(𝑁 + 1))) + 1) = (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1)) |
28 | fmtno 41970 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
29 | 28 | eqcomd 2767 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) = (FermatNo‘𝑁)) |
30 | 29 | oveq1d 6830 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = ((FermatNo‘𝑁) − 1)) |
31 | 30 | oveq1d 6830 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = (((FermatNo‘𝑁) − 1)↑2)) |
32 | 31 | oveq1d 6830 | . 2 ⊢ (𝑁 ∈ ℕ0 → (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
33 | 3, 27, 32 | 3eqtrd 2799 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 0cc0 10149 1c1 10150 + caddc 10152 · cmul 10154 − cmin 10479 2c2 11283 ℕ0cn0 11505 ℤcz 11590 ↑cexp 13075 FermatNocfmtno 41968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-n0 11506 df-z 11591 df-uz 11901 df-seq 13017 df-exp 13076 df-fmtno 41969 |
This theorem is referenced by: fmtnorec3 41989 fmtno5 41998 |
Copyright terms: Public domain | W3C validator |