Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec1 Structured version   Visualization version   GIF version

Theorem fmtnorec1 41978
Description: The first recurrence relation for Fermat numbers, see Wikipedia "Fermat number", https://en.wikipedia.org/wiki/Fermat_number#Basic_properties, 22-Jul-2021. (Contributed by AV, 22-Jul-2021.)
Assertion
Ref Expression
fmtnorec1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1))

Proof of Theorem fmtnorec1
StepHypRef Expression
1 peano2nn0 11546 . . 3 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 fmtno 41970 . . 3 ((𝑁 + 1) ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((2↑(2↑(𝑁 + 1))) + 1))
4 2nn0 11522 . . . . . . 7 2 ∈ ℕ0
5 nn0expcl 13089 . . . . . . . 8 ((2 ∈ ℕ0𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℕ0)
64, 5mpan 708 . . . . . . 7 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0)
7 nn0expcl 13089 . . . . . . . 8 ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℕ0)
87nn0cnd 11566 . . . . . . 7 ((2 ∈ ℕ0 ∧ (2↑𝑁) ∈ ℕ0) → (2↑(2↑𝑁)) ∈ ℂ)
94, 6, 8sylancr 698 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℂ)
10 pncan1 10667 . . . . . 6 ((2↑(2↑𝑁)) ∈ ℂ → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁)))
119, 10syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = (2↑(2↑𝑁)))
1211oveq1d 6830 . . . 4 (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = ((2↑(2↑𝑁))↑2))
13 2cnne0 11455 . . . . 5 (2 ∈ ℂ ∧ 2 ≠ 0)
146nn0zd 11693 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
15 2z 11622 . . . . . 6 2 ∈ ℤ
1614, 15jctir 562 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ))
17 expmulz 13121 . . . . 5 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℤ ∧ 2 ∈ ℤ)) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
1813, 16, 17sylancr 698 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
19 2cn 11304 . . . . . . 7 2 ∈ ℂ
20 2ne0 11326 . . . . . . 7 2 ≠ 0
21 nn0z 11613 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
22 expp1z 13124 . . . . . . 7 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
2319, 20, 21, 22mp3an12i 1577 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
2423eqcomd 2767 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) · 2) = (2↑(𝑁 + 1)))
2524oveq2d 6831 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1))))
2612, 18, 253eqtr2rd 2802 . . 3 (𝑁 ∈ ℕ0 → (2↑(2↑(𝑁 + 1))) = ((((2↑(2↑𝑁)) + 1) − 1)↑2))
2726oveq1d 6830 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑(𝑁 + 1))) + 1) = (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1))
28 fmtno 41970 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
2928eqcomd 2767 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) = (FermatNo‘𝑁))
3029oveq1d 6830 . . . 4 (𝑁 ∈ ℕ0 → (((2↑(2↑𝑁)) + 1) − 1) = ((FermatNo‘𝑁) − 1))
3130oveq1d 6830 . . 3 (𝑁 ∈ ℕ0 → ((((2↑(2↑𝑁)) + 1) − 1)↑2) = (((FermatNo‘𝑁) − 1)↑2))
3231oveq1d 6830 . 2 (𝑁 ∈ ℕ0 → (((((2↑(2↑𝑁)) + 1) − 1)↑2) + 1) = ((((FermatNo‘𝑁) − 1)↑2) + 1))
333, 27, 323eqtrd 2799 1 (𝑁 ∈ ℕ0 → (FermatNo‘(𝑁 + 1)) = ((((FermatNo‘𝑁) − 1)↑2) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  wne 2933  cfv 6050  (class class class)co 6815  cc 10147  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  cmin 10479  2c2 11283  0cn0 11505  cz 11590  cexp 13075  FermatNocfmtno 41968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-n0 11506  df-z 11591  df-uz 11901  df-seq 13017  df-exp 13076  df-fmtno 41969
This theorem is referenced by:  fmtnorec3  41989  fmtno5  41998
  Copyright terms: Public domain W3C validator