Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoprmfac1lem Structured version   Visualization version   GIF version

Theorem fmtnoprmfac1lem 41801
 Description: Lemma for fmtnoprmfac1 41802: The order of 2 modulo a prime that divides the n-th Fermat number is 2^(n+1). (Contributed by AV, 25-Jul-2021.) (Proof shortened by AV, 18-Mar-2022.)
Assertion
Ref Expression
fmtnoprmfac1lem ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))

Proof of Theorem fmtnoprmfac1lem
StepHypRef Expression
1 eldifi 3765 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
2 prmnn 15435 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℕ)
43ad2antlr 763 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∈ ℕ)
5 nnnn0 11337 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
6 fmtno 41766 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
75, 6syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
87breq2d 4697 . . . . . . 7 (𝑁 ∈ ℕ → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
98adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) ↔ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)))
109biimpa 500 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → 𝑃 ∥ ((2↑(2↑𝑁)) + 1))
11 dvdsmod0 15033 . . . . 5 ((𝑃 ∈ ℕ ∧ 𝑃 ∥ ((2↑(2↑𝑁)) + 1)) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0)
124, 10, 11syl2anc 694 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0)
1312ex 449 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) → (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0))
14 2nn 11223 . . . . . . . . . 10 2 ∈ ℕ
1514a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℕ)
16 2nn0 11347 . . . . . . . . . . 11 2 ∈ ℕ0
1716a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
1817, 5nn0expcld 13071 . . . . . . . . 9 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ0)
1915, 18nnexpcld 13070 . . . . . . . 8 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℕ)
2019nnzd 11519 . . . . . . 7 (𝑁 ∈ ℕ → (2↑(2↑𝑁)) ∈ ℤ)
2120adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(2↑𝑁)) ∈ ℤ)
22 1zzd 11446 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℤ)
233adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℕ)
24 summodnegmod 15059 . . . . . 6 (((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
2521, 22, 23, 24syl3anc 1366 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
26 neg1z 11451 . . . . . . . . . 10 -1 ∈ ℤ
2721, 26jctir 560 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
2827adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ))
292nnrpd 11908 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
301, 29syl 17 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
3117, 30anim12i 589 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
3231adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (2 ∈ ℕ0𝑃 ∈ ℝ+))
33 simpr 476 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃))
34 modexp 13039 . . . . . . . 8 ((((2↑(2↑𝑁)) ∈ ℤ ∧ -1 ∈ ℤ) ∧ (2 ∈ ℕ0𝑃 ∈ ℝ+) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3528, 32, 33, 34syl3anc 1366 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃))
3635ex 449 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃)))
37 2cnd 11131 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℂ)
3837, 18, 173jca 1261 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
3938adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0))
40 expmul 12945 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
4139, 40syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = ((2↑(2↑𝑁))↑2))
42 2cnd 11131 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ∈ ℂ)
435adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑁 ∈ ℕ0)
4442, 43expp1d 13049 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
4544eqcomd 2657 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑𝑁) · 2) = (2↑(𝑁 + 1)))
4645oveq2d 6706 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (2↑((2↑𝑁) · 2)) = (2↑(2↑(𝑁 + 1))))
4741, 46eqtr3d 2687 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁))↑2) = (2↑(2↑(𝑁 + 1))))
4847oveq1d 6705 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁))↑2) mod 𝑃) = ((2↑(2↑(𝑁 + 1))) mod 𝑃))
49 neg1sqe1 12999 . . . . . . . . . . 11 (-1↑2) = 1
5049a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1↑2) = 1)
5150oveq1d 6705 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = (1 mod 𝑃))
523nnred 11073 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
53 prmgt1 15456 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 1 < 𝑃)
541, 53syl 17 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → 1 < 𝑃)
55 1mod 12742 . . . . . . . . . . 11 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
5652, 54, 55syl2anc 694 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (1 mod 𝑃) = 1)
5756adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (1 mod 𝑃) = 1)
5851, 57eqtrd 2685 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((-1↑2) mod 𝑃) = 1)
5948, 58eqeq12d 2666 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) ↔ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1))
60 simpll 805 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → (𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})))
6120adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2↑(2↑𝑁)) ∈ ℤ)
62 1zzd 11446 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℤ)
632adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
6461, 62, 633jca 1261 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
651, 64sylan2 490 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6665adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((2↑(2↑𝑁)) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑃 ∈ ℕ))
6766, 24syl 17 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 ↔ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)))
68 m1modnnsub1 12756 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → (-1 mod 𝑃) = (𝑃 − 1))
6923, 68syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) = (𝑃 − 1))
70 eldifsni 4353 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
7170adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ≠ 2)
7271necomd 2878 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 2 ≠ 𝑃)
733nncnd 11074 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℂ)
7473adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 𝑃 ∈ ℂ)
75 1cnd 10094 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → 1 ∈ ℂ)
7674, 75, 75subadd2d 10449 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ (1 + 1) = 𝑃))
77 1p1e2 11172 . . . . . . . . . . . . . . . . . . . . 21 (1 + 1) = 2
7877eqeq1i 2656 . . . . . . . . . . . . . . . . . . . 20 ((1 + 1) = 𝑃 ↔ 2 = 𝑃)
7976, 78syl6bb 276 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) = 1 ↔ 2 = 𝑃))
8079necon3bid 2867 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((𝑃 − 1) ≠ 1 ↔ 2 ≠ 𝑃))
8172, 80mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 − 1) ≠ 1)
8269, 81eqnetrd 2890 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (-1 mod 𝑃) ≠ 1)
8382adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (-1 mod 𝑃) ≠ 1)
8483adantr 480 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (-1 mod 𝑃) ≠ 1)
85 eqeq1 2655 . . . . . . . . . . . . . . . 16 (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8685adantl 481 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) = 1 ↔ (-1 mod 𝑃) = 1))
8786necon3bid 2867 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ↔ (-1 mod 𝑃) ≠ 1))
8884, 87mpbird 247 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ ((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃)) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
8988ex 449 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9067, 89sylbid 230 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1))
9190imp 444 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑𝑁)) mod 𝑃) ≠ 1)
92 simplr 807 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)
93 odz2prm2pw 41800 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ (((2↑(2↑𝑁)) mod 𝑃) ≠ 1 ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9460, 91, 92, 93syl12anc 1364 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) ∧ (((2↑(2↑𝑁)) + 1) mod 𝑃) = 0) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
9594ex 449 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
9695ex 449 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑(𝑁 + 1))) mod 𝑃) = 1 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9759, 96sylbid 230 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁))↑2) mod 𝑃) = ((-1↑2) mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9836, 97syld 47 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (((2↑(2↑𝑁)) mod 𝑃) = (-1 mod 𝑃) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
9925, 98sylbid 230 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1)))))
10099pm2.43d 53 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((2↑(2↑𝑁)) + 1) mod 𝑃) = 0 → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
10113, 100syld 47 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2})) → (𝑃 ∥ (FermatNo‘𝑁) → ((od𝑃)‘2) = (2↑(𝑁 + 1))))
1021013impia 1280 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑃 ∥ (FermatNo‘𝑁)) → ((od𝑃)‘2) = (2↑(𝑁 + 1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   ∖ cdif 3604  {csn 4210   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112   − cmin 10304  -cneg 10305  ℕcn 11058  2c2 11108  ℕ0cn0 11330  ℤcz 11415  ℝ+crp 11870   mod cmo 12708  ↑cexp 12900   ∥ cdvds 15027  ℙcprime 15432  odℤcodz 15515  FermatNocfmtno 41764 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433  df-odz 15517  df-phi 15518  df-pc 15589  df-fmtno 41765 This theorem is referenced by:  fmtnoprmfac1  41802  fmtnoprmfac2  41804
 Copyright terms: Public domain W3C validator