![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoodd | Structured version Visualization version GIF version |
Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.) |
Ref | Expression |
---|---|
fmtnoodd | ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11387 | . . . . . 6 ⊢ 2 ∈ ℕ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ) |
3 | id 22 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
4 | 2, 3 | nnexpcld 13237 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ) |
5 | nnm1nn0 11536 | . . . . . 6 ⊢ ((2↑𝑁) ∈ ℕ → ((2↑𝑁) − 1) ∈ ℕ0) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℕ0) |
7 | 2, 6 | nnexpcld 13237 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℕ) |
8 | 7 | nnzd 11683 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℤ) |
9 | oveq2 6801 | . . . . 5 ⊢ (𝑘 = (2↑((2↑𝑁) − 1)) → (2 · 𝑘) = (2 · (2↑((2↑𝑁) − 1)))) | |
10 | 9 | oveq1d 6808 | . . . 4 ⊢ (𝑘 = (2↑((2↑𝑁) − 1)) → ((2 · 𝑘) + 1) = ((2 · (2↑((2↑𝑁) − 1))) + 1)) |
11 | fmtno 41969 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
12 | 10, 11 | eqeqan12rd 2789 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 = (2↑((2↑𝑁) − 1))) → (((2 · 𝑘) + 1) = (FermatNo‘𝑁) ↔ ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1))) |
13 | 2cnd 11295 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) | |
14 | 7 | nncnd 11238 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℂ) |
15 | 13, 14 | mulcomd 10263 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = ((2↑((2↑𝑁) − 1)) · 2)) |
16 | expm1t 13095 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ) → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2)) | |
17 | 13, 4, 16 | syl2anc 573 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2)) |
18 | 15, 17 | eqtr4d 2808 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = (2↑(2↑𝑁))) |
19 | 18 | oveq1d 6808 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1)) |
20 | 8, 12, 19 | rspcedvd 3467 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)) |
21 | fmtnonn 41971 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ) | |
22 | 21 | nnzd 11683 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ) |
23 | odd2np1 15273 | . . 3 ⊢ ((FermatNo‘𝑁) ∈ ℤ → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))) | |
24 | 22, 23 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))) |
25 | 20, 24 | mpbird 247 | 1 ⊢ (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 1c1 10139 + caddc 10141 · cmul 10143 − cmin 10468 ℕcn 11222 2c2 11272 ℕ0cn0 11494 ℤcz 11579 ↑cexp 13067 ∥ cdvds 15189 FermatNocfmtno 41967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-dvds 15190 df-fmtno 41968 |
This theorem is referenced by: goldbachthlem2 41986 fmtnoprmfac1 42005 fmtnoprmfac2 42007 |
Copyright terms: Public domain | W3C validator |