Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoodd Structured version   Visualization version   GIF version

Theorem fmtnoodd 41973
Description: Each Fermat number is odd. (Contributed by AV, 26-Jul-2021.)
Assertion
Ref Expression
fmtnoodd (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))

Proof of Theorem fmtnoodd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn 11387 . . . . . 6 2 ∈ ℕ
21a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 2 ∈ ℕ)
3 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
42, 3nnexpcld 13237 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ)
5 nnm1nn0 11536 . . . . . 6 ((2↑𝑁) ∈ ℕ → ((2↑𝑁) − 1) ∈ ℕ0)
64, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℕ0)
72, 6nnexpcld 13237 . . . 4 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℕ)
87nnzd 11683 . . 3 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℤ)
9 oveq2 6801 . . . . 5 (𝑘 = (2↑((2↑𝑁) − 1)) → (2 · 𝑘) = (2 · (2↑((2↑𝑁) − 1))))
109oveq1d 6808 . . . 4 (𝑘 = (2↑((2↑𝑁) − 1)) → ((2 · 𝑘) + 1) = ((2 · (2↑((2↑𝑁) − 1))) + 1))
11 fmtno 41969 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
1210, 11eqeqan12rd 2789 . . 3 ((𝑁 ∈ ℕ0𝑘 = (2↑((2↑𝑁) − 1))) → (((2 · 𝑘) + 1) = (FermatNo‘𝑁) ↔ ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1)))
13 2cnd 11295 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
147nncnd 11238 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑((2↑𝑁) − 1)) ∈ ℂ)
1513, 14mulcomd 10263 . . . . 5 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = ((2↑((2↑𝑁) − 1)) · 2))
16 expm1t 13095 . . . . . 6 ((2 ∈ ℂ ∧ (2↑𝑁) ∈ ℕ) → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1713, 4, 16syl2anc 573 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) = ((2↑((2↑𝑁) − 1)) · 2))
1815, 17eqtr4d 2808 . . . 4 (𝑁 ∈ ℕ0 → (2 · (2↑((2↑𝑁) − 1))) = (2↑(2↑𝑁)))
1918oveq1d 6808 . . 3 (𝑁 ∈ ℕ0 → ((2 · (2↑((2↑𝑁) − 1))) + 1) = ((2↑(2↑𝑁)) + 1))
208, 12, 19rspcedvd 3467 . 2 (𝑁 ∈ ℕ0 → ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁))
21 fmtnonn 41971 . . . 4 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
2221nnzd 11683 . . 3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
23 odd2np1 15273 . . 3 ((FermatNo‘𝑁) ∈ ℤ → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2422, 23syl 17 . 2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ (FermatNo‘𝑁) ↔ ∃𝑘 ∈ ℤ ((2 · 𝑘) + 1) = (FermatNo‘𝑁)))
2520, 24mpbird 247 1 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196   = wceq 1631  wcel 2145  wrex 3062   class class class wbr 4786  cfv 6031  (class class class)co 6793  cc 10136  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468  cn 11222  2c2 11272  0cn0 11494  cz 11579  cexp 13067  cdvds 15189  FermatNocfmtno 41967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-dvds 15190  df-fmtno 41968
This theorem is referenced by:  goldbachthlem2  41986  fmtnoprmfac1  42005  fmtnoprmfac2  42007
  Copyright terms: Public domain W3C validator