Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnoge3 Structured version   Visualization version   GIF version

Theorem fmtnoge3 40771
Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.)
Assertion
Ref Expression
fmtnoge3 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ‘3))

Proof of Theorem fmtnoge3
StepHypRef Expression
1 fmtno 40770 . 2 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1))
2 3z 11370 . . . 4 3 ∈ ℤ
32a1i 11 . . 3 (𝑁 ∈ ℕ0 → 3 ∈ ℤ)
4 2nn0 11269 . . . . . . 7 2 ∈ ℕ0
54a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → 2 ∈ ℕ0)
6 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
75, 6nn0expcld 12987 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0)
85, 7nn0expcld 12987 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℕ0)
9 peano2nn0 11293 . . . . 5 ((2↑(2↑𝑁)) ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0)
108, 9syl 17 . . . 4 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0)
1110nn0zd 11440 . . 3 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℤ)
12 3m1e2 11097 . . . . 5 (3 − 1) = 2
13 2cn 11051 . . . . . . 7 2 ∈ ℂ
14 exp1 12822 . . . . . . 7 (2 ∈ ℂ → (2↑1) = 2)
1513, 14ax-mp 5 . . . . . 6 (2↑1) = 2
16 2re 11050 . . . . . . . . 9 2 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
18 1le2 11201 . . . . . . . . 9 1 ≤ 2
1918a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ≤ 2)
2017, 6, 19expge1d 12983 . . . . . . 7 (𝑁 ∈ ℕ0 → 1 ≤ (2↑𝑁))
21 1zzd 11368 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
227nn0zd 11440 . . . . . . . 8 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ)
23 1lt2 11154 . . . . . . . . 9 1 < 2
2423a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 < 2)
2517, 21, 22, 24leexp2d 12995 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ (2↑𝑁) ↔ (2↑1) ≤ (2↑(2↑𝑁))))
2620, 25mpbid 222 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑1) ≤ (2↑(2↑𝑁)))
2715, 26syl5eqbrr 4659 . . . . 5 (𝑁 ∈ ℕ0 → 2 ≤ (2↑(2↑𝑁)))
2812, 27syl5eqbr 4658 . . . 4 (𝑁 ∈ ℕ0 → (3 − 1) ≤ (2↑(2↑𝑁)))
29 3re 11054 . . . . . 6 3 ∈ ℝ
3029a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 3 ∈ ℝ)
31 1red 10015 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
328nn0red 11312 . . . . 5 (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℝ)
3330, 31, 32lesubaddd 10584 . . . 4 (𝑁 ∈ ℕ0 → ((3 − 1) ≤ (2↑(2↑𝑁)) ↔ 3 ≤ ((2↑(2↑𝑁)) + 1)))
3428, 33mpbid 222 . . 3 (𝑁 ∈ ℕ0 → 3 ≤ ((2↑(2↑𝑁)) + 1))
35 eluz2 11653 . . 3 (((2↑(2↑𝑁)) + 1) ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ ∧ 3 ≤ ((2↑(2↑𝑁)) + 1)))
363, 11, 34, 35syl3anbrc 1244 . 2 (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ (ℤ‘3))
371, 36eqeltrd 2698 1 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ‘3))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987   class class class wbr 4623  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  1c1 9897   + caddc 9899   < clt 10034  cle 10035  cmin 10226  2c2 11030  3c3 11031  0cn0 11252  cz 11337  cuz 11647  cexp 12816  FermatNocfmtno 40768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-seq 12758  df-exp 12817  df-fmtno 40769
This theorem is referenced by:  fmtnonn  40772  prmdvdsfmtnof  40827  prmdvdsfmtnof1  40828
  Copyright terms: Public domain W3C validator