![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtnoge3 | Structured version Visualization version GIF version |
Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021.) |
Ref | Expression |
---|---|
fmtnoge3 | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtno 41920 | . 2 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) | |
2 | 3z 11573 | . . . 4 ⊢ 3 ∈ ℤ | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℤ) |
4 | 2nn0 11472 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℕ0) |
6 | id 22 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
7 | 5, 6 | nn0expcld 13196 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℕ0) |
8 | 5, 7 | nn0expcld 13196 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℕ0) |
9 | peano2nn0 11496 | . . . . 5 ⊢ ((2↑(2↑𝑁)) ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℕ0) |
11 | 10 | nn0zd 11643 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ ℤ) |
12 | 3m1e2 11300 | . . . . 5 ⊢ (3 − 1) = 2 | |
13 | 2cn 11254 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
14 | exp1 13031 | . . . . . . 7 ⊢ (2 ∈ ℂ → (2↑1) = 2) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (2↑1) = 2 |
16 | 2re 11253 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
17 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℝ) |
18 | 1le2 11404 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ≤ 2) |
20 | 17, 6, 19 | expge1d 13192 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → 1 ≤ (2↑𝑁)) |
21 | 1zzd 11571 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℤ) | |
22 | 7 | nn0zd 11643 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℤ) |
23 | 1lt2 11357 | . . . . . . . . 9 ⊢ 1 < 2 | |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 1 < 2) |
25 | 17, 21, 22, 24 | leexp2d 13204 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (1 ≤ (2↑𝑁) ↔ (2↑1) ≤ (2↑(2↑𝑁)))) |
26 | 20, 25 | mpbid 222 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (2↑1) ≤ (2↑(2↑𝑁))) |
27 | 15, 26 | syl5eqbrr 4828 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 2 ≤ (2↑(2↑𝑁))) |
28 | 12, 27 | syl5eqbr 4827 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (3 − 1) ≤ (2↑(2↑𝑁))) |
29 | 3re 11257 | . . . . . 6 ⊢ 3 ∈ ℝ | |
30 | 29 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 3 ∈ ℝ) |
31 | 1red 10218 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℝ) | |
32 | 8 | nn0red 11515 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑(2↑𝑁)) ∈ ℝ) |
33 | 30, 31, 32 | lesubaddd 10787 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((3 − 1) ≤ (2↑(2↑𝑁)) ↔ 3 ≤ ((2↑(2↑𝑁)) + 1))) |
34 | 28, 33 | mpbid 222 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 3 ≤ ((2↑(2↑𝑁)) + 1)) |
35 | eluz2 11856 | . . 3 ⊢ (((2↑(2↑𝑁)) + 1) ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ ((2↑(2↑𝑁)) + 1) ∈ ℤ ∧ 3 ≤ ((2↑(2↑𝑁)) + 1))) | |
36 | 3, 11, 34, 35 | syl3anbrc 1407 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ (ℤ≥‘3)) |
37 | 1, 36 | eqeltrd 2827 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ (ℤ≥‘3)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∈ wcel 2127 class class class wbr 4792 ‘cfv 6037 (class class class)co 6801 ℂcc 10097 ℝcr 10098 1c1 10100 + caddc 10102 < clt 10237 ≤ cle 10238 − cmin 10429 2c2 11233 3c3 11234 ℕ0cn0 11455 ℤcz 11540 ℤ≥cuz 11850 ↑cexp 13025 FermatNocfmtno 41918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-seq 12967 df-exp 13026 df-fmtno 41919 |
This theorem is referenced by: fmtnonn 41922 prmdvdsfmtnof 41977 prmdvdsfmtnof1 41978 |
Copyright terms: Public domain | W3C validator |