![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5 41997. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 11524 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 6nn0 11525 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
3 | 2, 1 | deccl 11724 | . . . 4 ⊢ ;65 ∈ ℕ0 |
4 | 3, 1 | deccl 11724 | . . 3 ⊢ ;;655 ∈ ℕ0 |
5 | 3nn0 11522 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 4, 5 | deccl 11724 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2760 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 0nn0 11519 | . 2 ⊢ 0 ∈ ℕ0 | |
9 | 2nn0 11521 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
10 | 5, 9 | deccl 11724 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
11 | 7nn0 11526 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
12 | 10, 11 | deccl 11724 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
13 | 12, 2 | deccl 11724 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
14 | eqid 2760 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
15 | 1nn0 11520 | . . . 4 ⊢ 1 ∈ ℕ0 | |
16 | 5p1e6 11367 | . . . . 5 ⊢ (5 + 1) = 6 | |
17 | eqid 2760 | . . . . . 6 ⊢ ;;655 = ;;655 | |
18 | eqid 2760 | . . . . . . . 8 ⊢ ;65 = ;65 | |
19 | 6t5e30 11856 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
20 | 2cn 11303 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
21 | 20 | addid2i 10436 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
22 | 5, 8, 9, 19, 21 | decaddi 11791 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
23 | 5t5e25 11851 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 11799 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
25 | 5p2e7 11377 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
26 | 10, 1, 9, 24, 25 | decaddi 11791 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 11799 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
28 | 12, 1, 16, 27 | decsuc 11747 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
29 | 5cn 11312 | . . . . 5 ⊢ 5 ∈ ℂ | |
30 | 3cn 11307 | . . . . 5 ⊢ 3 ∈ ℂ | |
31 | 5t3e15 11847 | . . . . 5 ⊢ (5 · 3) = ;15 | |
32 | 29, 30, 31 | mulcomli 10259 | . . . 4 ⊢ (3 · 5) = ;15 |
33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 11799 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
34 | 5p3e8 11378 | . . 3 ⊢ (5 + 3) = 8 | |
35 | 13, 1, 5, 33, 34 | decaddi 11791 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 11799 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 (class class class)co 6814 0cc0 10148 1c1 10149 · cmul 10153 2c2 11282 3c3 11283 5c5 11285 6c6 11286 7c7 11287 8c8 11288 ;cdc 11705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 df-sub 10480 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-dec 11706 |
This theorem is referenced by: fmtno5lem4 41996 |
Copyright terms: Public domain | W3C validator |