![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5faclem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5fac 42012. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5faclem2 | ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 11514 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 7nn0 11515 | . . . . . . 7 ⊢ 7 ∈ ℕ0 | |
3 | 1, 2 | deccl 11713 | . . . . . 6 ⊢ ;67 ∈ ℕ0 |
4 | 0nn0 11508 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
5 | 3, 4 | deccl 11713 | . . . . 5 ⊢ ;;670 ∈ ℕ0 |
6 | 5, 4 | deccl 11713 | . . . 4 ⊢ ;;;6700 ∈ ℕ0 |
7 | 4nn0 11512 | . . . 4 ⊢ 4 ∈ ℕ0 | |
8 | 6, 7 | deccl 11713 | . . 3 ⊢ ;;;;67004 ∈ ℕ0 |
9 | 1nn0 11509 | . . 3 ⊢ 1 ∈ ℕ0 | |
10 | 8, 9 | deccl 11713 | . 2 ⊢ ;;;;;670041 ∈ ℕ0 |
11 | eqid 2770 | . 2 ⊢ ;;;;;;6700417 = ;;;;;;6700417 | |
12 | 2nn0 11510 | . 2 ⊢ 2 ∈ ℕ0 | |
13 | 7, 4 | deccl 11713 | . . . . . . 7 ⊢ ;40 ∈ ℕ0 |
14 | 13, 12 | deccl 11713 | . . . . . 6 ⊢ ;;402 ∈ ℕ0 |
15 | 14, 4 | deccl 11713 | . . . . 5 ⊢ ;;;4020 ∈ ℕ0 |
16 | 15, 12 | deccl 11713 | . . . 4 ⊢ ;;;;40202 ∈ ℕ0 |
17 | 16, 7 | deccl 11713 | . . 3 ⊢ ;;;;;402024 ∈ ℕ0 |
18 | eqid 2770 | . . . 4 ⊢ ;;;;;670041 = ;;;;;670041 | |
19 | eqid 2770 | . . . . 5 ⊢ ;;;;67004 = ;;;;67004 | |
20 | eqid 2770 | . . . . . . 7 ⊢ ;;;6700 = ;;;6700 | |
21 | eqid 2770 | . . . . . . . 8 ⊢ ;;670 = ;;670 | |
22 | eqid 2770 | . . . . . . . . 9 ⊢ ;67 = ;67 | |
23 | 3nn0 11511 | . . . . . . . . . 10 ⊢ 3 ∈ ℕ0 | |
24 | 6t6e36 11846 | . . . . . . . . . 10 ⊢ (6 · 6) = ;36 | |
25 | 3p1e4 11354 | . . . . . . . . . 10 ⊢ (3 + 1) = 4 | |
26 | 6p4e10 11798 | . . . . . . . . . 10 ⊢ (6 + 4) = ;10 | |
27 | 23, 1, 7, 24, 25, 26 | decaddci2 11781 | . . . . . . . . 9 ⊢ ((6 · 6) + 4) = ;40 |
28 | 7t6e42 11852 | . . . . . . . . 9 ⊢ (7 · 6) = ;42 | |
29 | 1, 1, 2, 22, 12, 7, 27, 28 | decmul1c 11787 | . . . . . . . 8 ⊢ (;67 · 6) = ;;402 |
30 | 6cn 11303 | . . . . . . . . 9 ⊢ 6 ∈ ℂ | |
31 | 30 | mul02i 10426 | . . . . . . . 8 ⊢ (0 · 6) = 0 |
32 | 1, 3, 4, 21, 4, 29, 31 | decmul1 11785 | . . . . . . 7 ⊢ (;;670 · 6) = ;;;4020 |
33 | 1, 5, 4, 20, 4, 32, 31 | decmul1 11785 | . . . . . 6 ⊢ (;;;6700 · 6) = ;;;;40200 |
34 | 2cn 11292 | . . . . . . 7 ⊢ 2 ∈ ℂ | |
35 | 34 | addid2i 10425 | . . . . . 6 ⊢ (0 + 2) = 2 |
36 | 15, 4, 12, 33, 35 | decaddi 11779 | . . . . 5 ⊢ ((;;;6700 · 6) + 2) = ;;;;40202 |
37 | 4cn 11299 | . . . . . 6 ⊢ 4 ∈ ℂ | |
38 | 6t4e24 11843 | . . . . . 6 ⊢ (6 · 4) = ;24 | |
39 | 30, 37, 38 | mulcomli 10248 | . . . . 5 ⊢ (4 · 6) = ;24 |
40 | 1, 6, 7, 19, 7, 12, 36, 39 | decmul1c 11787 | . . . 4 ⊢ (;;;;67004 · 6) = ;;;;;402024 |
41 | 30 | mulid2i 10244 | . . . 4 ⊢ (1 · 6) = 6 |
42 | 1, 8, 9, 18, 1, 40, 41 | decmul1 11785 | . . 3 ⊢ (;;;;;670041 · 6) = ;;;;;;4020246 |
43 | eqid 2770 | . . . 4 ⊢ ;;;;;402024 = ;;;;;402024 | |
44 | 4p1e5 11355 | . . . 4 ⊢ (4 + 1) = 5 | |
45 | 16, 7, 9, 43, 44 | decaddi 11779 | . . 3 ⊢ (;;;;;402024 + 1) = ;;;;;402025 |
46 | 17, 1, 7, 42, 45, 26 | decaddci2 11781 | . 2 ⊢ ((;;;;;670041 · 6) + 4) = ;;;;;;4020250 |
47 | 1, 10, 2, 11, 12, 7, 46, 28 | decmul1c 11787 | 1 ⊢ (;;;;;;6700417 · 6) = ;;;;;;;40202502 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 (class class class)co 6792 0cc0 10137 1c1 10138 · cmul 10142 2c2 11271 3c3 11272 4c4 11273 5c5 11274 6c6 11275 7c7 11276 ;cdc 11694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-ltxr 10280 df-sub 10469 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-dec 11695 |
This theorem is referenced by: fmtno5fac 42012 |
Copyright terms: Public domain | W3C validator |