Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prmfac Structured version   Visualization version   GIF version

Theorem fmtno4prmfac 41249
Description: If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prmfac ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))

Proof of Theorem fmtno4prmfac
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2z 11394 . . . . 5 2 ∈ ℤ
2 4z 11396 . . . . 5 4 ∈ ℤ
3 2re 11075 . . . . . 6 2 ∈ ℝ
4 4re 11082 . . . . . 6 4 ∈ ℝ
5 2lt4 11183 . . . . . 6 2 < 4
63, 4, 5ltleii 10145 . . . . 5 2 ≤ 4
7 eluz2 11678 . . . . 5 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
81, 2, 6, 7mpbir3an 1242 . . . 4 4 ∈ (ℤ‘2)
9 fmtnoprmfac2 41244 . . . 4 ((4 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
108, 9mp3an1 1409 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
11 elnnuz 11709 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
12 4nn 11172 . . . . . . . . . 10 4 ∈ ℕ
13 nnuz 11708 . . . . . . . . . 10 ℕ = (ℤ‘1)
1412, 13eleqtri 2697 . . . . . . . . 9 4 ∈ (ℤ‘1)
15 fzouzsplit 12487 . . . . . . . . 9 (4 ∈ (ℤ‘1) → (ℤ‘1) = ((1..^4) ∪ (ℤ‘4)))
1614, 15ax-mp 5 . . . . . . . 8 (ℤ‘1) = ((1..^4) ∪ (ℤ‘4))
1716eleq2i 2691 . . . . . . 7 (𝑘 ∈ (ℤ‘1) ↔ 𝑘 ∈ ((1..^4) ∪ (ℤ‘4)))
18 elun 3745 . . . . . . . 8 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ (𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)))
19 fzo1to4tp 12540 . . . . . . . . . . 11 (1..^4) = {1, 2, 3}
2019eleq2i 2691 . . . . . . . . . 10 (𝑘 ∈ (1..^4) ↔ 𝑘 ∈ {1, 2, 3})
21 vex 3198 . . . . . . . . . . 11 𝑘 ∈ V
2221eltp 4221 . . . . . . . . . 10 (𝑘 ∈ {1, 2, 3} ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2320, 22bitri 264 . . . . . . . . 9 (𝑘 ∈ (1..^4) ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2423orbi1i 542 . . . . . . . 8 ((𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2518, 24bitri 264 . . . . . . 7 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2611, 17, 253bitri 286 . . . . . 6 (𝑘 ∈ ℕ ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
27 4p2e6 11147 . . . . . . . . . . . . 13 (4 + 2) = 6
2827oveq2i 6646 . . . . . . . . . . . 12 (2↑(4 + 2)) = (2↑6)
29 2exp6 15776 . . . . . . . . . . . 12 (2↑6) = 64
3028, 29eqtri 2642 . . . . . . . . . . 11 (2↑(4 + 2)) = 64
3130oveq2i 6646 . . . . . . . . . 10 (𝑘 · (2↑(4 + 2))) = (𝑘 · 64)
3231oveq1i 6645 . . . . . . . . 9 ((𝑘 · (2↑(4 + 2))) + 1) = ((𝑘 · 64) + 1)
3332eqeq2i 2632 . . . . . . . 8 (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) ↔ 𝑃 = ((𝑘 · 64) + 1))
34 simpl 473 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = ((𝑘 · 64) + 1))
35 oveq1 6642 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → (𝑘 · 64) = (1 · 64))
36 6nn0 11298 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℕ0
37 4nn0 11296 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ0
3836, 37deccl 11497 . . . . . . . . . . . . . . . . . . . . 21 64 ∈ ℕ0
3938nn0cni 11289 . . . . . . . . . . . . . . . . . . . 20 64 ∈ ℂ
4039mulid2i 10028 . . . . . . . . . . . . . . . . . . 19 (1 · 64) = 64
4135, 40syl6eq 2670 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (𝑘 · 64) = 64)
4241oveq1d 6650 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝑘 · 64) + 1) = (64 + 1))
43 4p1e5 11139 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
44 eqid 2620 . . . . . . . . . . . . . . . . . 18 64 = 64
4536, 37, 43, 44decsuc 11520 . . . . . . . . . . . . . . . . 17 (64 + 1) = 65
4642, 45syl6eq 2670 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝑘 · 64) + 1) = 65)
4746adantl 482 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → ((𝑘 · 64) + 1) = 65)
4834, 47eqtrd 2654 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = 65)
4948ex 450 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 1 → 𝑃 = 65))
50 simpl 473 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = ((𝑘 · 64) + 1))
51 oveq1 6642 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (𝑘 · 64) = (2 · 64))
52 2nn0 11294 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ0
53 6cn 11087 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℂ
54 2cn 11076 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
55 6t2e12 11626 . . . . . . . . . . . . . . . . . . . . . 22 (6 · 2) = 12
5653, 54, 55mulcomli 10032 . . . . . . . . . . . . . . . . . . . . 21 (2 · 6) = 12
5756eqcomi 2629 . . . . . . . . . . . . . . . . . . . 20 12 = (2 · 6)
58 4cn 11083 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℂ
59 4t2e8 11166 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 2) = 8
6058, 54, 59mulcomli 10032 . . . . . . . . . . . . . . . . . . . . 21 (2 · 4) = 8
6160eqcomi 2629 . . . . . . . . . . . . . . . . . . . 20 8 = (2 · 4)
6236, 37, 52, 57, 61decmul10add 11578 . . . . . . . . . . . . . . . . . . 19 (2 · 64) = (120 + 8)
6351, 62syl6eq 2670 . . . . . . . . . . . . . . . . . 18 (𝑘 = 2 → (𝑘 · 64) = (120 + 8))
6463oveq1d 6650 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → ((𝑘 · 64) + 1) = ((120 + 8) + 1))
65 1nn0 11293 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
6665, 52deccl 11497 . . . . . . . . . . . . . . . . . 18 12 ∈ ℕ0
67 8nn0 11300 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ0
68 8p1e9 11143 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
69 0nn0 11292 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
70 eqid 2620 . . . . . . . . . . . . . . . . . . 19 120 = 120
71 8cn 11091 . . . . . . . . . . . . . . . . . . . 20 8 ∈ ℂ
7271addid2i 10209 . . . . . . . . . . . . . . . . . . 19 (0 + 8) = 8
7366, 69, 67, 70, 72decaddi 11564 . . . . . . . . . . . . . . . . . 18 (120 + 8) = 128
7466, 67, 68, 73decsuc 11520 . . . . . . . . . . . . . . . . 17 ((120 + 8) + 1) = 129
7564, 74syl6eq 2670 . . . . . . . . . . . . . . . 16 (𝑘 = 2 → ((𝑘 · 64) + 1) = 129)
7675adantl 482 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → ((𝑘 · 64) + 1) = 129)
7750, 76eqtrd 2654 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = 129)
7877ex 450 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 2 → 𝑃 = 129))
79 simpl 473 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = ((𝑘 · 64) + 1))
80 oveq1 6642 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 3 → (𝑘 · 64) = (3 · 64))
81 3nn0 11295 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℕ0
82 6t3e18 11627 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = 18
83 3cn 11080 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℂ
8453, 83mulcomi 10031 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = (3 · 6)
8582, 84eqtr3i 2644 . . . . . . . . . . . . . . . . . . . 20 18 = (3 · 6)
86 4t3e12 11617 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = 12
8758, 83mulcomi 10031 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = (3 · 4)
8886, 87eqtr3i 2644 . . . . . . . . . . . . . . . . . . . 20 12 = (3 · 4)
8936, 37, 81, 85, 88decmul10add 11578 . . . . . . . . . . . . . . . . . . 19 (3 · 64) = (180 + 12)
9080, 89syl6eq 2670 . . . . . . . . . . . . . . . . . 18 (𝑘 = 3 → (𝑘 · 64) = (180 + 12))
9190oveq1d 6650 . . . . . . . . . . . . . . . . 17 (𝑘 = 3 → ((𝑘 · 64) + 1) = ((180 + 12) + 1))
92 9nn0 11301 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℕ0
9365, 92deccl 11497 . . . . . . . . . . . . . . . . . 18 19 ∈ ℕ0
94 2p1e3 11136 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
9565, 67deccl 11497 . . . . . . . . . . . . . . . . . . 19 18 ∈ ℕ0
96 eqid 2620 . . . . . . . . . . . . . . . . . . 19 180 = 180
97 eqid 2620 . . . . . . . . . . . . . . . . . . 19 12 = 12
98 eqid 2620 . . . . . . . . . . . . . . . . . . . 20 18 = 18
9965, 67, 68, 98decsuc 11520 . . . . . . . . . . . . . . . . . . 19 (18 + 1) = 19
10054addid2i 10209 . . . . . . . . . . . . . . . . . . 19 (0 + 2) = 2
10195, 69, 65, 52, 96, 97, 99, 100decadd 11555 . . . . . . . . . . . . . . . . . 18 (180 + 12) = 192
10293, 52, 94, 101decsuc 11520 . . . . . . . . . . . . . . . . 17 ((180 + 12) + 1) = 193
10391, 102syl6eq 2670 . . . . . . . . . . . . . . . 16 (𝑘 = 3 → ((𝑘 · 64) + 1) = 193)
104103adantl 482 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → ((𝑘 · 64) + 1) = 193)
10579, 104eqtrd 2654 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = 193)
106105ex 450 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 3 → 𝑃 = 193))
10749, 78, 1063orim123d 1405 . . . . . . . . . . . 12 (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
108107a1i 11 . . . . . . . . . . 11 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
109108com13 88 . . . . . . . . . 10 ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
110 fmtno4sqrt 41248 . . . . . . . . . . . . 13 (⌊‘(√‘(FermatNo‘4))) = 256
111110breq2i 4652 . . . . . . . . . . . 12 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) ↔ 𝑃256)
112 breq1 4647 . . . . . . . . . . . . . 14 (𝑃 = ((𝑘 · 64) + 1) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
113112adantl 482 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
114 eluz2 11678 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘))
115 6t4e24 11628 . . . . . . . . . . . . . . . . . . . . . . 23 (6 · 4) = 24
11653, 58, 115mulcomli 10032 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 6) = 24
11752, 37, 43, 116decsuc 11520 . . . . . . . . . . . . . . . . . . . . 21 ((4 · 6) + 1) = 25
118 4t4e16 11618 . . . . . . . . . . . . . . . . . . . . 21 (4 · 4) = 16
11937, 36, 37, 44, 36, 65, 117, 118decmul2c 11574 . . . . . . . . . . . . . . . . . . . 20 (4 · 64) = 256
120 zre 11366 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
12138nn0rei 11288 . . . . . . . . . . . . . . . . . . . . . . . 24 64 ∈ ℝ
12236, 12decnncl 11503 . . . . . . . . . . . . . . . . . . . . . . . . 25 64 ∈ ℕ
123122nngt0i 11039 . . . . . . . . . . . . . . . . . . . . . . . 24 0 < 64
124121, 123pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . 23 (64 ∈ ℝ ∧ 0 < 64)
125124a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (64 ∈ ℝ ∧ 0 < 64))
126 lemul1 10860 . . . . . . . . . . . . . . . . . . . . . 22 ((4 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (64 ∈ ℝ ∧ 0 < 64)) → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
1274, 120, 125, 126mp3an2i 1427 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
128127biimpa 501 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (4 · 64) ≤ (𝑘 · 64))
129119, 128syl5eqbrr 4680 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 ≤ (𝑘 · 64))
130 5nn0 11297 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ0
13152, 130deccl 11497 . . . . . . . . . . . . . . . . . . . . . 22 25 ∈ ℕ0
132131, 36deccl 11497 . . . . . . . . . . . . . . . . . . . . 21 256 ∈ ℕ0
133132nn0zi 11387 . . . . . . . . . . . . . . . . . . . 20 256 ∈ ℤ
134 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℤ)
13538nn0zi 11387 . . . . . . . . . . . . . . . . . . . . . . 23 64 ∈ ℤ
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 64 ∈ ℤ)
137134, 136zmulcld 11473 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (𝑘 · 64) ∈ ℤ)
138137adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (𝑘 · 64) ∈ ℤ)
139 zleltp1 11413 . . . . . . . . . . . . . . . . . . . 20 ((256 ∈ ℤ ∧ (𝑘 · 64) ∈ ℤ) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
140133, 138, 139sylancr 694 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
141129, 140mpbid 222 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
1421413adant1 1077 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
143114, 142sylbi 207 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → 256 < ((𝑘 · 64) + 1))
144132nn0rei 11288 . . . . . . . . . . . . . . . . . 18 256 ∈ ℝ
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → 256 ∈ ℝ)
146 eluzelre 11683 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 𝑘 ∈ ℝ)
147121a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 64 ∈ ℝ)
148146, 147remulcld 10055 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘4) → (𝑘 · 64) ∈ ℝ)
149 peano2re 10194 . . . . . . . . . . . . . . . . . 18 ((𝑘 · 64) ∈ ℝ → ((𝑘 · 64) + 1) ∈ ℝ)
150148, 149syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → ((𝑘 · 64) + 1) ∈ ℝ)
151145, 150ltnled 10169 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → (256 < ((𝑘 · 64) + 1) ↔ ¬ ((𝑘 · 64) + 1) ≤ 256))
152143, 151mpbid 222 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘4) → ¬ ((𝑘 · 64) + 1) ≤ 256)
153152pm2.21d 118 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘4) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
154153adantr 481 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
155113, 154sylbid 230 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
156111, 155syl5bi 232 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
157156ex 450 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘4) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
158109, 157jaoi 394 . . . . . . . . 9 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
159158adantr 481 . . . . . . . 8 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16033, 159syl5bi 232 . . . . . . 7 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
161160ex 450 . . . . . 6 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
16226, 161sylbi 207 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
163162com12 32 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑘 ∈ ℕ → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
164163rexlimdv 3026 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16510, 164mpd 15 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
1661653impia 1259 1 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3o 1035  w3a 1036   = wceq 1481  wcel 1988  wrex 2910  cun 3565  {ctp 4172   class class class wbr 4644  cfv 5876  (class class class)co 6635  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926   < clt 10059  cle 10060  cn 11005  2c2 11055  3c3 11056  4c4 11057  5c5 11058  6c6 11059  8c8 11061  9c9 11062  cz 11362  cdc 11478  cuz 11672  ..^cfzo 12449  cfl 12574  cexp 12843  csqrt 13954  cdvds 14964  cprime 15366  FermatNocfmtno 41204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-xnn0 11349  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-ioo 12164  df-ico 12166  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-prod 14617  df-dvds 14965  df-gcd 15198  df-prm 15367  df-odz 15451  df-phi 15452  df-pc 15523  df-lgs 25001  df-fmtno 41205
This theorem is referenced by:  fmtno4prmfac193  41250
  Copyright terms: Public domain W3C validator