![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno | Structured version Visualization version GIF version |
Description: The 𝑁 th Fermat number. (Contributed by AV, 13-Jun-2021.) |
Ref | Expression |
---|---|
fmtno | ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fmtno 41958 | . . 3 ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1)) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ ℕ0 → FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))) |
3 | oveq2 6800 | . . . . 5 ⊢ (𝑛 = 𝑁 → (2↑𝑛) = (2↑𝑁)) | |
4 | 3 | oveq2d 6808 | . . . 4 ⊢ (𝑛 = 𝑁 → (2↑(2↑𝑛)) = (2↑(2↑𝑁))) |
5 | 4 | oveq1d 6807 | . . 3 ⊢ (𝑛 = 𝑁 → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1)) |
6 | 5 | adantl 467 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 = 𝑁) → ((2↑(2↑𝑛)) + 1) = ((2↑(2↑𝑁)) + 1)) |
7 | id 22 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
8 | ovexd 6824 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((2↑(2↑𝑁)) + 1) ∈ V) | |
9 | 2, 6, 7, 8 | fvmptd 6430 | 1 ⊢ (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) = ((2↑(2↑𝑁)) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 1c1 10138 + caddc 10140 2c2 11271 ℕ0cn0 11493 ↑cexp 13066 FermatNocfmtno 41957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-fmtno 41958 |
This theorem is referenced by: fmtnoge3 41960 fmtnom1nn 41962 fmtnoodd 41963 fmtnof1 41965 fmtnorec1 41967 fmtnosqrt 41969 fmtno0 41970 fmtno1 41971 fmtnorec2lem 41972 fmtnorec3 41978 fmtnorec4 41979 fmtno2 41980 fmtno3 41981 fmtno4 41982 fmtnoprmfac1lem 41994 fmtno4prm 42005 2pwp1prmfmtno 42022 |
Copyright terms: Public domain | W3C validator |