MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmss Structured version   Visualization version   GIF version

Theorem fmss 21969
Description: A finer filter produces a finer image filter. (Contributed by Jeff Hankins, 16-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
fmss (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶))

Proof of Theorem fmss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1228 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐵 ∈ (fBas‘𝑌))
2 simprl 746 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐹:𝑌𝑋)
3 simpl1 1226 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝑋𝐴)
4 eqid 2770 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
54fbasrn 21907 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
61, 2, 3, 5syl3anc 1475 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
7 simpl3 1230 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → 𝐶 ∈ (fBas‘𝑌))
8 eqid 2770 . . . . 5 ran (𝑦𝐶 ↦ (𝐹𝑦)) = ran (𝑦𝐶 ↦ (𝐹𝑦))
98fbasrn 21907 . . . 4 ((𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋𝐴) → ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
107, 2, 3, 9syl3anc 1475 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
11 resmpt 5590 . . . . . 6 (𝐵𝐶 → ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
1211ad2antll 700 . . . . 5 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
13 resss 5563 . . . . 5 ((𝑦𝐶 ↦ (𝐹𝑦)) ↾ 𝐵) ⊆ (𝑦𝐶 ↦ (𝐹𝑦))
1412, 13syl6eqssr 3803 . . . 4 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ (𝑦𝐶 ↦ (𝐹𝑦)))
15 rnss 5492 . . . 4 ((𝑦𝐵 ↦ (𝐹𝑦)) ⊆ (𝑦𝐶 ↦ (𝐹𝑦)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦)))
1614, 15syl 17 . . 3 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦)))
17 fgss 21896 . . 3 ((ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦𝐶 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ⊆ ran (𝑦𝐶 ↦ (𝐹𝑦))) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ⊆ (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
186, 10, 16, 17syl3anc 1475 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ⊆ (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
19 fmval 21966 . . 3 ((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
203, 1, 2, 19syl3anc 1475 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
21 fmval 21966 . . 3 ((𝑋𝐴𝐶 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
223, 7, 2, 21syl3anc 1475 . 2 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐶) = (𝑋filGenran (𝑦𝐶 ↦ (𝐹𝑦))))
2318, 20, 223sstr4d 3795 1 (((𝑋𝐴𝐵 ∈ (fBas‘𝑌) ∧ 𝐶 ∈ (fBas‘𝑌)) ∧ (𝐹:𝑌𝑋𝐵𝐶)) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ ((𝑋 FilMap 𝐹)‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wss 3721  cmpt 4861  ran crn 5250  cres 5251  cima 5252  wf 6027  cfv 6031  (class class class)co 6792  fBascfbas 19948  filGencfg 19949   FilMap cfm 21956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-fbas 19957  df-fg 19958  df-fm 21961
This theorem is referenced by:  ufldom  21985  cnpfcfi  22063
  Copyright terms: Public domain W3C validator