![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmptpr | Structured version Visualization version GIF version |
Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017.) |
Ref | Expression |
---|---|
fmptpr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fmptpr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fmptpr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
fmptpr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑌) |
fmptpr.5 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) |
fmptpr.6 | ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) |
Ref | Expression |
---|---|
fmptpr | ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4324 | . . 3 ⊢ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉})) |
3 | fmptpr.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐸 = 𝐶) | |
4 | fmptpr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | fmptpr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
6 | 3, 4, 5 | fmptsnd 6599 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐶〉} = (𝑥 ∈ {𝐴} ↦ 𝐸)) |
7 | 6 | uneq1d 3909 | . 2 ⊢ (𝜑 → ({〈𝐴, 𝐶〉} ∪ {〈𝐵, 𝐷〉}) = ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {〈𝐵, 𝐷〉})) |
8 | fmptpr.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
9 | elex 3352 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | fmptpr.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑌) | |
12 | elex 3352 | . . . 4 ⊢ (𝐷 ∈ 𝑌 → 𝐷 ∈ V) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
14 | df-pr 4324 | . . . . 5 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
15 | 14 | eqcomi 2769 | . . . 4 ⊢ ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵} |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → ({𝐴} ∪ {𝐵}) = {𝐴, 𝐵}) |
17 | fmptpr.6 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → 𝐸 = 𝐷) | |
18 | 10, 13, 16, 17 | fmptapd 6601 | . 2 ⊢ (𝜑 → ((𝑥 ∈ {𝐴} ↦ 𝐸) ∪ {〈𝐵, 𝐷〉}) = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
19 | 2, 7, 18 | 3eqtrd 2798 | 1 ⊢ (𝜑 → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∪ cun 3713 {csn 4321 {cpr 4323 〈cop 4327 ↦ cmpt 4881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-opab 4865 df-mpt 4882 |
This theorem is referenced by: pmtrprfvalrn 18108 esumsnf 30435 sge0sn 41099 zlmodzxzscm 42645 zlmodzxzadd 42646 |
Copyright terms: Public domain | W3C validator |