![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpti | Structured version Visualization version GIF version |
Description: Functionality of the mapping operation. (Contributed by NM, 19-Mar-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
fmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
fmpti.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) |
Ref | Expression |
---|---|
fmpti | ⊢ 𝐹:𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpti.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) | |
2 | 1 | rgen 3060 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 |
3 | fmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
4 | 3 | fmpt 6544 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ↔ 𝐹:𝐴⟶𝐵) |
5 | 2, 4 | mpbi 220 | 1 ⊢ 𝐹:𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ↦ cmpt 4881 ⟶wf 6045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 |
This theorem is referenced by: harf 8630 r0weon 9025 dfac2a 9142 ackbij1lem10 9243 cff 9262 isf32lem9 9375 fin1a2lem2 9415 fin1a2lem4 9417 facmapnn 13266 wwlktovf 13900 cjf 14043 ref 14051 imf 14052 absf 14276 limsupcl 14403 limsupgf 14405 eff 15011 sinf 15053 cosf 15054 bitsf 15351 fnum 15652 fden 15653 prmgapprmo 15968 setcepi 16939 catcfuccl 16960 staffval 19049 ocvfval 20212 pjfval 20252 pjpm 20254 leordtval2 21218 lecldbas 21225 nmfval 22594 nmoffn 22716 nmofval 22719 divcn 22872 xrhmeo 22946 tchex 23216 tchnmfval 23227 ioorf 23541 dveflem 23941 resinf1o 24481 efifo 24492 logcnlem5 24591 resqrtcn 24689 asinf 24798 acosf 24800 atanf 24806 leibpilem2 24867 areaf 24887 emcllem1 24921 igamf 24976 chtf 25033 chpf 25048 ppif 25055 muf 25065 bposlem7 25214 2lgslem1b 25316 pntrf 25451 pntrsumo1 25453 pntsf 25461 pntrlog2bndlem4 25468 pntrlog2bndlem5 25469 normf 28289 hosubcli 28937 cnlnadjlem4 29238 cnlnadjlem6 29240 eulerpartlemsf 30730 fiblem 30769 signsvvf 30965 derangf 31457 snmlff 31618 sinccvglem 31873 circum 31875 dnif 32770 f1omptsnlem 33494 phpreu 33706 poimirlem26 33748 cncfres 33877 lsatset 34780 clsk1independent 38846 lhe4.4ex1a 39030 absfico 39909 clim1fr1 40336 liminfgf 40493 limsup10ex 40508 liminf10ex 40509 dvsinax 40630 wallispilem5 40789 wallispi 40790 stirlinglem5 40798 stirlinglem13 40806 stirlinglem14 40807 stirlinglem15 40808 stirlingr 40810 fourierdlem43 40870 fourierdlem57 40883 fourierdlem58 40884 fourierdlem62 40888 fouriersw 40951 0ome 41249 fmtnof1 41957 prmdvdsfmtnof 42008 sprsymrelf 42255 uspgrsprf 42264 |
Copyright terms: Public domain | W3C validator |