Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptf Structured version   Visualization version   GIF version

Theorem fmptf 39762
Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fmptf.1 𝑥𝐵
fmptf.2 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
fmptf (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fmptf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1883 . . 3 𝑦 𝐶𝐵
2 nfcsb1v 3582 . . . 4 𝑥𝑦 / 𝑥𝐶
3 fmptf.1 . . . 4 𝑥𝐵
42, 3nfel 2806 . . 3 𝑥𝑦 / 𝑥𝐶𝐵
5 csbeq1a 3575 . . . 4 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
65eleq1d 2715 . . 3 (𝑥 = 𝑦 → (𝐶𝐵𝑦 / 𝑥𝐶𝐵))
71, 4, 6cbvral 3197 . 2 (∀𝑥𝐴 𝐶𝐵 ↔ ∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵)
8 fmptf.2 . . . 4 𝐹 = (𝑥𝐴𝐶)
9 nfcv 2793 . . . . 5 𝑦𝐶
109, 2, 5cbvmpt 4782 . . . 4 (𝑥𝐴𝐶) = (𝑦𝐴𝑦 / 𝑥𝐶)
118, 10eqtri 2673 . . 3 𝐹 = (𝑦𝐴𝑦 / 𝑥𝐶)
1211fmpt 6421 . 2 (∀𝑦𝐴 𝑦 / 𝑥𝐶𝐵𝐹:𝐴𝐵)
137, 12bitri 264 1 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1523  wcel 2030  wnfc 2780  wral 2941  csb 3566  cmpt 4762  wf 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934
This theorem is referenced by:  rnmptssf  39776
  Copyright terms: Public domain W3C validator