Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptcos Structured version   Visualization version   GIF version

Theorem fmptcos 6541
 Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
fmptcof.1 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
fmptcof.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptcof.3 (𝜑𝐺 = (𝑦𝐵𝑆))
Assertion
Ref Expression
fmptcos (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑦,𝑅   𝑥,𝑆   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptcos
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fmptcof.1 . 2 (𝜑 → ∀𝑥𝐴 𝑅𝐵)
2 fmptcof.2 . 2 (𝜑𝐹 = (𝑥𝐴𝑅))
3 fmptcof.3 . . 3 (𝜑𝐺 = (𝑦𝐵𝑆))
4 nfcv 2913 . . . 4 𝑧𝑆
5 nfcsb1v 3698 . . . 4 𝑦𝑧 / 𝑦𝑆
6 csbeq1a 3691 . . . 4 (𝑦 = 𝑧𝑆 = 𝑧 / 𝑦𝑆)
74, 5, 6cbvmpt 4883 . . 3 (𝑦𝐵𝑆) = (𝑧𝐵𝑧 / 𝑦𝑆)
83, 7syl6eq 2821 . 2 (𝜑𝐺 = (𝑧𝐵𝑧 / 𝑦𝑆))
9 csbeq1 3685 . 2 (𝑧 = 𝑅𝑧 / 𝑦𝑆 = 𝑅 / 𝑦𝑆)
101, 2, 8, 9fmptcof 6540 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑅 / 𝑦𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1631   ∈ wcel 2145  ∀wral 3061  ⦋csb 3682   ↦ cmpt 4863   ∘ ccom 5253 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039 This theorem is referenced by:  fmpt2co  7411  gsummptf1o  18569  divcncf  23435  gsummpt2d  30121
 Copyright terms: Public domain W3C validator