MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptapd Structured version   Visualization version   GIF version

Theorem fmptapd 6580
Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017.)
Hypotheses
Ref Expression
fmptapd.0a (𝜑𝐴 ∈ V)
fmptapd.0b (𝜑𝐵 ∈ V)
fmptapd.1 (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)
fmptapd.2 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)
Assertion
Ref Expression
fmptapd (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem fmptapd
StepHypRef Expression
1 fmptapd.2 . . . 4 ((𝜑𝑥 = 𝐴) → 𝐶 = 𝐵)
2 fmptapd.0a . . . 4 (𝜑𝐴 ∈ V)
3 fmptapd.0b . . . 4 (𝜑𝐵 ∈ V)
41, 2, 3fmptsnd 6578 . . 3 (𝜑 → {⟨𝐴, 𝐵⟩} = (𝑥 ∈ {𝐴} ↦ 𝐶))
54uneq2d 3916 . 2 (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)))
6 mptun 6165 . . 3 (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶))
76a1i 11 . 2 (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = ((𝑥𝑅𝐶) ∪ (𝑥 ∈ {𝐴} ↦ 𝐶)))
8 fmptapd.1 . . 3 (𝜑 → (𝑅 ∪ {𝐴}) = 𝑆)
98mpteq1d 4870 . 2 (𝜑 → (𝑥 ∈ (𝑅 ∪ {𝐴}) ↦ 𝐶) = (𝑥𝑆𝐶))
105, 7, 93eqtr2d 2810 1 (𝜑 → ((𝑥𝑅𝐶) ∪ {⟨𝐴, 𝐵⟩}) = (𝑥𝑆𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  Vcvv 3349  cun 3719  {csn 4314  cop 4320  cmpt 4861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-opab 4845  df-mpt 4862
This theorem is referenced by:  fmptpr  6581  poimirlem3  33738  poimirlem4  33739  poimirlem16  33751  poimirlem17  33752  poimirlem19  33754  poimirlem20  33755
  Copyright terms: Public domain W3C validator