Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem1 Structured version   Visualization version   GIF version

Theorem fmfnfmlem1 21959
 Description: Lemma for fmfnfm 21963. (Contributed by Jeff Hankins, 18-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem1 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
Distinct variable groups:   𝑡,𝑠,𝐵   𝐹,𝑠,𝑡   𝐿,𝑠,𝑡   𝜑,𝑠,𝑡   𝑋,𝑠,𝑡   𝑌,𝑠,𝑡

Proof of Theorem fmfnfmlem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fmfnfm.b . . . . 5 (𝜑𝐵 ∈ (fBas‘𝑌))
2 fbssfi 21842 . . . . 5 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ (fi‘𝐵)) → ∃𝑤𝐵 𝑤𝑠)
31, 2sylan 489 . . . 4 ((𝜑𝑠 ∈ (fi‘𝐵)) → ∃𝑤𝐵 𝑤𝑠)
4 sstr2 3751 . . . . . 6 ((𝐹𝑤) ⊆ (𝐹𝑠) → ((𝐹𝑠) ⊆ 𝑡 → (𝐹𝑤) ⊆ 𝑡))
5 imass2 5659 . . . . . 6 (𝑤𝑠 → (𝐹𝑤) ⊆ (𝐹𝑠))
64, 5syl11 33 . . . . 5 ((𝐹𝑠) ⊆ 𝑡 → (𝑤𝑠 → (𝐹𝑤) ⊆ 𝑡))
76reximdv 3154 . . . 4 ((𝐹𝑠) ⊆ 𝑡 → (∃𝑤𝐵 𝑤𝑠 → ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡))
83, 7syl5com 31 . . 3 ((𝜑𝑠 ∈ (fi‘𝐵)) → ((𝐹𝑠) ⊆ 𝑡 → ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡))
9 fmfnfm.l . . . . . . . 8 (𝜑𝐿 ∈ (Fil‘𝑋))
10 filtop 21860 . . . . . . . 8 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
119, 10syl 17 . . . . . . 7 (𝜑𝑋𝐿)
12 fmfnfm.f . . . . . . 7 (𝜑𝐹:𝑌𝑋)
13 elfm 21952 . . . . . . 7 ((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡𝑋 ∧ ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡)))
1411, 1, 12, 13syl3anc 1477 . . . . . 6 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝑡𝑋 ∧ ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡)))
15 fmfnfm.fm . . . . . . 7 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
1615sseld 3743 . . . . . 6 (𝜑 → (𝑡 ∈ ((𝑋 FilMap 𝐹)‘𝐵) → 𝑡𝐿))
1714, 16sylbird 250 . . . . 5 (𝜑 → ((𝑡𝑋 ∧ ∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡) → 𝑡𝐿))
1817expcomd 453 . . . 4 (𝜑 → (∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
1918adantr 472 . . 3 ((𝜑𝑠 ∈ (fi‘𝐵)) → (∃𝑤𝐵 (𝐹𝑤) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
208, 19syld 47 . 2 ((𝜑𝑠 ∈ (fi‘𝐵)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
2120ex 449 1 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∈ wcel 2139  ∃wrex 3051   ⊆ wss 3715   “ cima 5269  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  ficfi 8481  fBascfbas 19936  Filcfil 21850   FilMap cfm 21938 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-fin 8125  df-fi 8482  df-fbas 19945  df-fg 19946  df-fil 21851  df-fm 21943 This theorem is referenced by:  fmfnfmlem4  21962
 Copyright terms: Public domain W3C validator