Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmcfil Structured version   Visualization version   GIF version

Theorem fmcfil 23270
 Description: The Cauchy filter condition for a filter map. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
fmcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐹,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem fmcfil
Dummy variables 𝑢 𝑠 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6381 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 fmval 21948 . . . 4 ((𝑋 ∈ dom ∞Met ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
31, 2syl3an1 1167 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐵) = (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))))
43eleq1d 2824 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ (𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷)))
5 simp1 1131 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6 simp2 1132 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐵 ∈ (fBas‘𝑌))
7 simp3 1133 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
813ad2ant1 1128 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 ∈ dom ∞Met)
9 eqid 2760 . . . . 5 ran (𝑦𝐵 ↦ (𝐹𝑦)) = ran (𝑦𝐵 ↦ (𝐹𝑦))
109fbasrn 21889 . . . 4 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋𝑋 ∈ dom ∞Met) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
116, 7, 8, 10syl3anc 1477 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋))
12 fgcfil 23269 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ ran (𝑦𝐵 ↦ (𝐹𝑦)) ∈ (fBas‘𝑋)) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
135, 11, 12syl2anc 696 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋filGenran (𝑦𝐵 ↦ (𝐹𝑦))) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥))
14 imassrn 5635 . . . . . . . 8 (𝐹𝑦) ⊆ ran 𝐹
15 frn 6214 . . . . . . . . 9 (𝐹:𝑌𝑋 → ran 𝐹𝑋)
16153ad2ant3 1130 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ran 𝐹𝑋)
1714, 16syl5ss 3755 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ⊆ 𝑋)
188, 17ssexd 4957 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐹𝑦) ∈ V)
1918ralrimivw 3105 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ∀𝑦𝐵 (𝐹𝑦) ∈ V)
20 eqid 2760 . . . . . 6 (𝑦𝐵 ↦ (𝐹𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦))
21 raleq 3277 . . . . . . 7 (𝑠 = (𝐹𝑦) → (∀𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2221raleqbi1dv 3285 . . . . . 6 (𝑠 = (𝐹𝑦) → (∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2320, 22rexrnmpt 6532 . . . . 5 (∀𝑦𝐵 (𝐹𝑦) ∈ V → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
2419, 23syl 17 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥))
25 simpl3 1232 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹:𝑌𝑋)
26 ffn 6206 . . . . . . . 8 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
2725, 26syl 17 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝐹 Fn 𝑌)
28 fbelss 21838 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝑌)
296, 28sylan 489 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → 𝑦𝑌)
30 oveq1 6820 . . . . . . . . . 10 (𝑢 = (𝐹𝑧) → (𝑢𝐷𝑣) = ((𝐹𝑧)𝐷𝑣))
3130breq1d 4814 . . . . . . . . 9 (𝑢 = (𝐹𝑧) → ((𝑢𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷𝑣) < 𝑥))
3231ralbidv 3124 . . . . . . . 8 (𝑢 = (𝐹𝑧) → (∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3332ralima 6661 . . . . . . 7 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
3427, 29, 33syl2anc 696 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥))
35 oveq2 6821 . . . . . . . . . 10 (𝑣 = (𝐹𝑤) → ((𝐹𝑧)𝐷𝑣) = ((𝐹𝑧)𝐷(𝐹𝑤)))
3635breq1d 4814 . . . . . . . . 9 (𝑣 = (𝐹𝑤) → (((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3736ralima 6661 . . . . . . . 8 ((𝐹 Fn 𝑌𝑦𝑌) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3827, 29, 37syl2anc 696 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
3938ralbidv 3124 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑧𝑦𝑣 ∈ (𝐹𝑦)((𝐹𝑧)𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4034, 39bitrd 268 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑦𝐵) → (∀𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4140rexbidva 3187 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵𝑢 ∈ (𝐹𝑦)∀𝑣 ∈ (𝐹𝑦)(𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4224, 41bitrd 268 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∃𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
4342ralbidv 3124 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑥 ∈ ℝ+𝑠 ∈ ran (𝑦𝐵 ↦ (𝐹𝑦))∀𝑢𝑠𝑣𝑠 (𝑢𝐷𝑣) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
444, 13, 433bitrd 294 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (((𝑋 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑦𝐵𝑧𝑦𝑤𝑦 ((𝐹𝑧)𝐷(𝐹𝑤)) < 𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  Vcvv 3340   ⊆ wss 3715   class class class wbr 4804   ↦ cmpt 4881  dom cdm 5266  ran crn 5267   “ cima 5269   Fn wfn 6044  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   < clt 10266  ℝ+crp 12025  ∞Metcxmt 19933  fBascfbas 19936  filGencfg 19937   FilMap cfm 21938  CauFilccfil 23250 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-2 11271  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ico 12374  df-xmet 19941  df-fbas 19945  df-fg 19946  df-fil 21851  df-fm 21943  df-cfil 23253 This theorem is referenced by:  caucfil  23281
 Copyright terms: Public domain W3C validator