MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flval3 Structured version   Visualization version   GIF version

Theorem flval3 12731
Description: An alternate way to define the floor (greatest integer) function, as the supremum of all integers less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 6-Sep-2014.)
Assertion
Ref Expression
flval3 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem flval3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3793 . . . . 5 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℤ
2 zssre 11497 . . . . 5 ℤ ⊆ ℝ
31, 2sstri 3718 . . . 4 {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ
43a1i 11 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ)
5 flcl 12711 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ)
6 flle 12715 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
7 breq1 4763 . . . . . 6 (𝑥 = (⌊‘𝐴) → (𝑥𝐴 ↔ (⌊‘𝐴) ≤ 𝐴))
87elrab 3469 . . . . 5 ((⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ↔ ((⌊‘𝐴) ∈ ℤ ∧ (⌊‘𝐴) ≤ 𝐴))
95, 6, 8sylanbrc 701 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴})
10 ne0i 4029 . . . 4 ((⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅)
119, 10syl 17 . . 3 (𝐴 ∈ ℝ → {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅)
12 reflcl 12712 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
13 breq1 4763 . . . . . . 7 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
1413elrab 3469 . . . . . 6 (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ↔ (𝑧 ∈ ℤ ∧ 𝑧𝐴))
15 flge 12721 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1615biimpd 219 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑧 ∈ ℤ) → (𝑧𝐴𝑧 ≤ (⌊‘𝐴)))
1716expimpd 630 . . . . . 6 (𝐴 ∈ ℝ → ((𝑧 ∈ ℤ ∧ 𝑧𝐴) → 𝑧 ≤ (⌊‘𝐴)))
1814, 17syl5bi 232 . . . . 5 (𝐴 ∈ ℝ → (𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴} → 𝑧 ≤ (⌊‘𝐴)))
1918ralrimiv 3067 . . . 4 (𝐴 ∈ ℝ → ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴))
20 breq2 4764 . . . . . 6 (𝑦 = (⌊‘𝐴) → (𝑧𝑦𝑧 ≤ (⌊‘𝐴)))
2120ralbidv 3088 . . . . 5 (𝑦 = (⌊‘𝐴) → (∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦 ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
2221rspcev 3413 . . . 4 (((⌊‘𝐴) ∈ ℝ ∧ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
2312, 19, 22syl2anc 696 . . 3 (𝐴 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦)
24 suprub 11097 . . 3 ((({𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦) ∧ (⌊‘𝐴) ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}) → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
254, 11, 23, 9, 24syl31anc 1442 . 2 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
26 suprleub 11102 . . . 4 ((({𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦) ∧ (⌊‘𝐴) ∈ ℝ) → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
274, 11, 23, 12, 26syl31anc 1442 . . 3 (𝐴 ∈ ℝ → (sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴) ↔ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧 ≤ (⌊‘𝐴)))
2819, 27mpbird 247 . 2 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))
29 suprcl 11096 . . . 4 (({𝑥 ∈ ℤ ∣ 𝑥𝐴} ⊆ ℝ ∧ {𝑥 ∈ ℤ ∣ 𝑥𝐴} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ {𝑥 ∈ ℤ ∣ 𝑥𝐴}𝑧𝑦) → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
304, 11, 23, 29syl3anc 1439 . . 3 (𝐴 ∈ ℝ → sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∈ ℝ)
3112, 30letri3d 10292 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ↔ ((⌊‘𝐴) ≤ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ∧ sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ) ≤ (⌊‘𝐴))))
3225, 28, 31mpbir2and 995 1 (𝐴 ∈ ℝ → (⌊‘𝐴) = sup({𝑥 ∈ ℤ ∣ 𝑥𝐴}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  wne 2896  wral 3014  wrex 3015  {crab 3018  wss 3680  c0 4023   class class class wbr 4760  cfv 6001  supcsup 8462  cr 10048   < clt 10187  cle 10188  cz 11490  cfl 12706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fl 12708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator