![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flval2 | Structured version Visualization version GIF version |
Description: An alternate way to define the floor (greatest integer) function. (Contributed by NM, 16-Nov-2004.) |
Ref | Expression |
---|---|
flval2 | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flle 12640 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
2 | flge 12646 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑦 ≤ 𝐴 ↔ 𝑦 ≤ (⌊‘𝐴))) | |
3 | 2 | biimpd 219 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) |
4 | 3 | ralrimiva 2995 | . . 3 ⊢ (𝐴 ∈ ℝ → ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) |
5 | flcl 12636 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
6 | zmax 11823 | . . . 4 ⊢ (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) | |
7 | breq1 4688 | . . . . . 6 ⊢ (𝑥 = (⌊‘𝐴) → (𝑥 ≤ 𝐴 ↔ (⌊‘𝐴) ≤ 𝐴)) | |
8 | breq2 4689 | . . . . . . . 8 ⊢ (𝑥 = (⌊‘𝐴) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (⌊‘𝐴))) | |
9 | 8 | imbi2d 329 | . . . . . . 7 ⊢ (𝑥 = (⌊‘𝐴) → ((𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴)))) |
10 | 9 | ralbidv 3015 | . . . . . 6 ⊢ (𝑥 = (⌊‘𝐴) → (∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥) ↔ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴)))) |
11 | 7, 10 | anbi12d 747 | . . . . 5 ⊢ (𝑥 = (⌊‘𝐴) → ((𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)) ↔ ((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))))) |
12 | 11 | riota2 6673 | . . . 4 ⊢ (((⌊‘𝐴) ∈ ℤ ∧ ∃!𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) → (((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴))) |
13 | 5, 6, 12 | syl2anc 694 | . . 3 ⊢ (𝐴 ∈ ℝ → (((⌊‘𝐴) ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ (⌊‘𝐴))) ↔ (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴))) |
14 | 1, 4, 13 | mpbi2and 976 | . 2 ⊢ (𝐴 ∈ ℝ → (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥))) = (⌊‘𝐴)) |
15 | 14 | eqcomd 2657 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) = (℩𝑥 ∈ ℤ (𝑥 ≤ 𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦 ≤ 𝐴 → 𝑦 ≤ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃!wreu 2943 class class class wbr 4685 ‘cfv 5926 ℩crio 6650 ℝcr 9973 ≤ cle 10113 ℤcz 11415 ⌊cfl 12631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fl 12633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |