![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimval | Structured version Visualization version GIF version |
Description: The set of limit points of a filter. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.) |
Ref | Expression |
---|---|
flimval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flimval | ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimval.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | topopn 20931 | . . . 4 ⊢ (𝐽 ∈ Top → 𝑋 ∈ 𝐽) |
3 | 2 | adantr 466 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → 𝑋 ∈ 𝐽) |
4 | rabexg 4945 | . . 3 ⊢ (𝑋 ∈ 𝐽 → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) |
6 | simpl 468 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑗 = 𝐽) | |
7 | 6 | unieqd 4584 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = ∪ 𝐽) |
8 | 7, 1 | syl6eqr 2823 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ∪ 𝑗 = 𝑋) |
9 | 6 | fveq2d 6336 | . . . . . . 7 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (nei‘𝑗) = (nei‘𝐽)) |
10 | 9 | fveq1d 6334 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((nei‘𝑗)‘{𝑥}) = ((nei‘𝐽)‘{𝑥})) |
11 | simpr 471 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) | |
12 | 10, 11 | sseq12d 3783 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ↔ ((nei‘𝐽)‘{𝑥}) ⊆ 𝐹)) |
13 | 8 | pweqd 4302 | . . . . . 6 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → 𝒫 ∪ 𝑗 = 𝒫 𝑋) |
14 | 11, 13 | sseq12d 3783 | . . . . 5 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → (𝑓 ⊆ 𝒫 ∪ 𝑗 ↔ 𝐹 ⊆ 𝒫 𝑋)) |
15 | 12, 14 | anbi12d 616 | . . . 4 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → ((((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗) ↔ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋))) |
16 | 8, 15 | rabeqbidv 3345 | . . 3 ⊢ ((𝑗 = 𝐽 ∧ 𝑓 = 𝐹) → {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)} = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
17 | df-flim 21963 | . . 3 ⊢ fLim = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil ↦ {𝑥 ∈ ∪ 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) | |
18 | 16, 17 | ovmpt2ga 6937 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)} ∈ V) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
19 | 5, 18 | mpd3an3 1573 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil) → (𝐽 fLim 𝐹) = {𝑥 ∈ 𝑋 ∣ (((nei‘𝐽)‘{𝑥}) ⊆ 𝐹 ∧ 𝐹 ⊆ 𝒫 𝑋)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 Vcvv 3351 ⊆ wss 3723 𝒫 cpw 4297 {csn 4316 ∪ cuni 4574 ran crn 5250 ‘cfv 6031 (class class class)co 6793 Topctop 20918 neicnei 21122 Filcfil 21869 fLim cflim 21958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-top 20919 df-flim 21963 |
This theorem is referenced by: elflim2 21988 |
Copyright terms: Public domain | W3C validator |