MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcls Structured version   Visualization version   GIF version

Theorem flimcls 22009
Description: Closure in terms of filter convergence. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flimcls ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐽   𝑆,𝑓   𝑓,𝑋

Proof of Theorem flimcls
StepHypRef Expression
1 eqid 2771 . . . . . 6 (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))
21flimclslem 22008 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ 𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))))
3 3anass 1080 . . . . 5 (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ 𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))) ↔ ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))))
42, 3sylib 208 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))))
5 eleq2 2839 . . . . . 6 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝑆𝑓𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
6 oveq2 6804 . . . . . . 7 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝐽 fLim 𝑓) = (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))
76eleq2d 2836 . . . . . 6 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → (𝐴 ∈ (𝐽 fLim 𝑓) ↔ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))))))
85, 7anbi12d 616 . . . . 5 (𝑓 = (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) → ((𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)) ↔ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))))
98rspcev 3460 . . . 4 (((𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∈ (Fil‘𝑋) ∧ (𝑆 ∈ (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆}))) ∧ 𝐴 ∈ (𝐽 fLim (𝑋filGen(fi‘(((nei‘𝐽)‘{𝐴}) ∪ {𝑆})))))) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)))
104, 9syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋𝐴 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)))
11103expia 1114 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) → ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
12 flimclsi 22002 . . . 4 (𝑆𝑓 → (𝐽 fLim 𝑓) ⊆ ((cls‘𝐽)‘𝑆))
1312sselda 3752 . . 3 ((𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
1413rexlimivw 3177 . 2 (∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓)) → 𝐴 ∈ ((cls‘𝐽)‘𝑆))
1511, 14impbid1 215 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝑋) → (𝐴 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓 ∈ (Fil‘𝑋)(𝑆𝑓𝐴 ∈ (𝐽 fLim 𝑓))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wrex 3062  cun 3721  wss 3723  {csn 4317  cfv 6030  (class class class)co 6796  ficfi 8476  filGencfg 19950  TopOnctopon 20935  clsccl 21043  neicnei 21122  Filcfil 21869   fLim cflim 21958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-fin 8117  df-fi 8477  df-fbas 19958  df-fg 19959  df-top 20919  df-topon 20936  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-fil 21870  df-flim 21963
This theorem is referenced by:  cmetss  23332
  Copyright terms: Public domain W3C validator