![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fliftcnv | Structured version Visualization version GIF version |
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
flift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
flift.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
Ref | Expression |
---|---|
fliftcnv | ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . . 5 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) | |
2 | flift.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) | |
3 | flift.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) | |
4 | 1, 2, 3 | fliftrel 6701 | . . . 4 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) ⊆ (𝑆 × 𝑅)) |
5 | relxp 5266 | . . . 4 ⊢ Rel (𝑆 × 𝑅) | |
6 | relss 5346 | . . . 4 ⊢ (ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) | |
7 | 4, 5, 6 | mpisyl 21 | . . 3 ⊢ (𝜑 → Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
8 | relcnv 5644 | . . 3 ⊢ Rel ◡𝐹 | |
9 | 7, 8 | jctil 509 | . 2 ⊢ (𝜑 → (Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) |
10 | flift.1 | . . . . . . 7 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) | |
11 | 10, 3, 2 | fliftel 6702 | . . . . . 6 ⊢ (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵))) |
12 | vex 3354 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
13 | vex 3354 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
14 | 12, 13 | brcnv 5443 | . . . . . 6 ⊢ (𝑦◡𝐹𝑧 ↔ 𝑧𝐹𝑦) |
15 | ancom 452 | . . . . . . 7 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) | |
16 | 15 | rexbii 3189 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴) ↔ ∃𝑥 ∈ 𝑋 (𝑧 = 𝐴 ∧ 𝑦 = 𝐵)) |
17 | 11, 14, 16 | 3bitr4g 303 | . . . . 5 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
18 | 1, 2, 3 | fliftel 6702 | . . . . 5 ⊢ (𝜑 → (𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐵 ∧ 𝑧 = 𝐴))) |
19 | 17, 18 | bitr4d 271 | . . . 4 ⊢ (𝜑 → (𝑦◡𝐹𝑧 ↔ 𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧)) |
20 | df-br 4787 | . . . 4 ⊢ (𝑦◡𝐹𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ◡𝐹) | |
21 | df-br 4787 | . . . 4 ⊢ (𝑦ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)𝑧 ↔ 〈𝑦, 𝑧〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) | |
22 | 19, 20, 21 | 3bitr3g 302 | . . 3 ⊢ (𝜑 → (〈𝑦, 𝑧〉 ∈ ◡𝐹 ↔ 〈𝑦, 𝑧〉 ∈ ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉))) |
23 | 22 | eqrelrdv2 5359 | . 2 ⊢ (((Rel ◡𝐹 ∧ Rel ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) ∧ 𝜑) → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
24 | 9, 23 | mpancom 668 | 1 ⊢ (𝜑 → ◡𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐵, 𝐴〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 ⊆ wss 3723 〈cop 4322 class class class wbr 4786 ↦ cmpt 4863 × cxp 5247 ◡ccnv 5248 ran crn 5250 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 |
This theorem is referenced by: pi1xfrcnvlem 23075 |
Copyright terms: Public domain | W3C validator |