MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftcnv Structured version   Visualization version   GIF version

Theorem fliftcnv 6546
Description: Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftcnv (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2620 . . . . 5 ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)
2 flift.3 . . . . 5 ((𝜑𝑥𝑋) → 𝐵𝑆)
3 flift.2 . . . . 5 ((𝜑𝑥𝑋) → 𝐴𝑅)
41, 2, 3fliftrel 6543 . . . 4 (𝜑 → ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅))
5 relxp 5217 . . . 4 Rel (𝑆 × 𝑅)
6 relss 5196 . . . 4 (ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩) ⊆ (𝑆 × 𝑅) → (Rel (𝑆 × 𝑅) → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
74, 5, 6mpisyl 21 . . 3 (𝜑 → Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
8 relcnv 5491 . . 3 Rel 𝐹
97, 8jctil 559 . 2 (𝜑 → (Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
10 flift.1 . . . . . . 7 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
1110, 3, 2fliftel 6544 . . . . . 6 (𝜑 → (𝑧𝐹𝑦 ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵)))
12 vex 3198 . . . . . . 7 𝑦 ∈ V
13 vex 3198 . . . . . . 7 𝑧 ∈ V
1412, 13brcnv 5294 . . . . . 6 (𝑦𝐹𝑧𝑧𝐹𝑦)
15 ancom 466 . . . . . . 7 ((𝑦 = 𝐵𝑧 = 𝐴) ↔ (𝑧 = 𝐴𝑦 = 𝐵))
1615rexbii 3037 . . . . . 6 (∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴) ↔ ∃𝑥𝑋 (𝑧 = 𝐴𝑦 = 𝐵))
1711, 14, 163bitr4g 303 . . . . 5 (𝜑 → (𝑦𝐹𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
181, 2, 3fliftel 6544 . . . . 5 (𝜑 → (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐵𝑧 = 𝐴)))
1917, 18bitr4d 271 . . . 4 (𝜑 → (𝑦𝐹𝑧𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧))
20 df-br 4645 . . . 4 (𝑦𝐹𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐹)
21 df-br 4645 . . . 4 (𝑦ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
2219, 20, 213bitr3g 302 . . 3 (𝜑 → (⟨𝑦, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑧⟩ ∈ ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)))
2322eqrelrdv2 5209 . 2 (((Rel 𝐹 ∧ Rel ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩)) ∧ 𝜑) → 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
249, 23mpancom 702 1 (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  wrex 2910  wss 3567  cop 4174   class class class wbr 4644  cmpt 4720   × cxp 5102  ccnv 5103  ran crn 5105  Rel wrel 5109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-fv 5884
This theorem is referenced by:  pi1xfrcnvlem  22837
  Copyright terms: Public domain W3C validator