![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flid | Structured version Visualization version GIF version |
Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004.) |
Ref | Expression |
---|---|
flid | ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11565 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | flle 12786 | . . 3 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) ≤ 𝐴) |
4 | 1 | leidd 10778 | . . 3 ⊢ (𝐴 ∈ ℤ → 𝐴 ≤ 𝐴) |
5 | flge 12792 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℤ) → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ (⌊‘𝐴))) | |
6 | 1, 5 | mpancom 706 | . . 3 ⊢ (𝐴 ∈ ℤ → (𝐴 ≤ 𝐴 ↔ 𝐴 ≤ (⌊‘𝐴))) |
7 | 4, 6 | mpbid 222 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ≤ (⌊‘𝐴)) |
8 | reflcl 12783 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
9 | 1, 8 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) ∈ ℝ) |
10 | 9, 1 | letri3d 10363 | . 2 ⊢ (𝐴 ∈ ℤ → ((⌊‘𝐴) = 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 ≤ (⌊‘𝐴)))) |
11 | 3, 7, 10 | mpbir2and 995 | 1 ⊢ (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1624 ∈ wcel 2131 class class class wbr 4796 ‘cfv 6041 ℝcr 10119 ≤ cle 10259 ℤcz 11561 ⌊cfl 12777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-fl 12779 |
This theorem is referenced by: flidm 12796 flidz 12797 ceilid 12836 fleqceilz 12839 zmod10 12872 bits0 15344 bitsp1e 15348 bitsuz 15390 phiprmpw 15675 fldivp1 15795 prmreclem4 15817 dvfsumlem1 23980 dvfsumlem3 23982 ppival2 25045 ppival2g 25046 chtprm 25070 chtnprm 25071 chpp1 25072 chtdif 25075 cht1 25082 chp1 25084 prmorcht 25095 logfaclbnd 25138 logfacbnd3 25139 logexprlim 25141 rplogsumlem2 25365 log2sumbnd 25424 logdivbnd 25436 pntrsumbnd 25446 pntrlog2bndlem1 25457 pntrlog2bndlem4 25460 chpvalz 31007 chtvalz 31008 dnizphlfeqhlf 32764 lefldiveq 39996 fourierdlem65 40883 zefldiv2ALTV 42075 bits0ALTV 42092 zefldiv2 42826 flnn0div2ge 42829 flnn0ohalf 42830 nnlog2ge0lt1 42862 logbpw2m1 42863 blenpw2 42874 blen1 42880 blen2 42881 blengt1fldiv2p1 42889 dignn0fr 42897 dig0 42902 digexp 42903 0dig2nn0e 42908 0dig2nn0o 42909 |
Copyright terms: Public domain | W3C validator |