MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fleqceilz Structured version   Visualization version   GIF version

Theorem fleqceilz 12847
Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.)
Assertion
Ref Expression
fleqceilz (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem fleqceilz
StepHypRef Expression
1 flid 12803 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 12844 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2797 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 eqeq1 2764 . . . . . 6 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
54adantr 472 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
6 ceilidz 12845 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
7 eqcom 2767 . . . . . . . 8 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
86, 7syl6bb 276 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
98biimprd 238 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
109adantl 473 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
115, 10sylbid 230 . . . 4 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1211ex 449 . . 3 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
13 flle 12794 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
14 df-ne 2933 . . . . 5 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
15 necom 2985 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
16 reflcl 12791 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
17 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
1816, 17ltlend 10374 . . . . . . . . 9 (𝐴 ∈ ℝ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
19 breq1 4807 . . . . . . . . . . . . 13 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2019adantl 473 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
21 ceilge 12839 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴))
22 ceilcl 12837 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ)
2322zred 11674 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℝ)
2417, 23lenltd 10375 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
25 pm2.21 120 . . . . . . . . . . . . . . 15 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2624, 25syl6bi 243 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
2721, 26mpd 15 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2827adantr 472 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2920, 28sylbid 230 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3029ex 449 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3130com23 86 . . . . . . . . 9 (𝐴 ∈ ℝ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3218, 31sylbird 250 . . . . . . . 8 (𝐴 ∈ ℝ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3332expd 451 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3433com3r 87 . . . . . 6 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3515, 34sylbi 207 . . . . 5 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3614, 35sylbir 225 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3713, 36mpdi 45 . . 3 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3812, 37pm2.61i 176 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
393, 38impbid2 216 1 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  cr 10127   < clt 10266  cle 10267  cz 11569  cfl 12785  cceil 12786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fl 12787  df-ceil 12788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator