MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fleqceilz Structured version   Visualization version   GIF version

Theorem fleqceilz 12609
Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018.)
Assertion
Ref Expression
fleqceilz (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))

Proof of Theorem fleqceilz
StepHypRef Expression
1 flid 12565 . . 3 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
2 ceilid 12606 . . 3 (𝐴 ∈ ℤ → (⌈‘𝐴) = 𝐴)
31, 2eqtr4d 2658 . 2 (𝐴 ∈ ℤ → (⌊‘𝐴) = (⌈‘𝐴))
4 eqeq1 2625 . . . . . 6 ((⌊‘𝐴) = 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
54adantr 481 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → ((⌊‘𝐴) = (⌈‘𝐴) ↔ 𝐴 = (⌈‘𝐴)))
6 ceilidz 12607 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌈‘𝐴) = 𝐴))
7 eqcom 2628 . . . . . . . 8 ((⌈‘𝐴) = 𝐴𝐴 = (⌈‘𝐴))
86, 7syl6bb 276 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ 𝐴 = (⌈‘𝐴)))
98biimprd 238 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
109adantl 482 . . . . 5 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → (𝐴 = (⌈‘𝐴) → 𝐴 ∈ ℤ))
115, 10sylbid 230 . . . 4 (((⌊‘𝐴) = 𝐴𝐴 ∈ ℝ) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
1211ex 450 . . 3 ((⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
13 flle 12556 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
14 df-ne 2791 . . . . 5 ((⌊‘𝐴) ≠ 𝐴 ↔ ¬ (⌊‘𝐴) = 𝐴)
15 necom 2843 . . . . . 6 ((⌊‘𝐴) ≠ 𝐴𝐴 ≠ (⌊‘𝐴))
16 reflcl 12553 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
17 id 22 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
1816, 17ltlend 10142 . . . . . . . . 9 (𝐴 ∈ ℝ → ((⌊‘𝐴) < 𝐴 ↔ ((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴))))
19 breq1 4626 . . . . . . . . . . . . 13 ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
2019adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴 ↔ (⌈‘𝐴) < 𝐴))
21 ceilge 12601 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → 𝐴 ≤ (⌈‘𝐴))
22 ceilcl 12599 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℤ)
2322zred 11442 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ → (⌈‘𝐴) ∈ ℝ)
2417, 23lenltd 10143 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) ↔ ¬ (⌈‘𝐴) < 𝐴))
25 pm2.21 120 . . . . . . . . . . . . . . 15 (¬ (⌈‘𝐴) < 𝐴 → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2624, 25syl6bi 243 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ → (𝐴 ≤ (⌈‘𝐴) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ)))
2721, 26mpd 15 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2827adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌈‘𝐴) < 𝐴𝐴 ∈ ℤ))
2920, 28sylbid 230 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (⌊‘𝐴) = (⌈‘𝐴)) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ))
3029ex 450 . . . . . . . . . 10 (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → ((⌊‘𝐴) < 𝐴𝐴 ∈ ℤ)))
3130com23 86 . . . . . . . . 9 (𝐴 ∈ ℝ → ((⌊‘𝐴) < 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3218, 31sylbird 250 . . . . . . . 8 (𝐴 ∈ ℝ → (((⌊‘𝐴) ≤ 𝐴𝐴 ≠ (⌊‘𝐴)) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3332expd 452 . . . . . . 7 (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → (𝐴 ≠ (⌊‘𝐴) → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3433com3r 87 . . . . . 6 (𝐴 ≠ (⌊‘𝐴) → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3515, 34sylbi 207 . . . . 5 ((⌊‘𝐴) ≠ 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3614, 35sylbir 225 . . . 4 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))))
3713, 36mpdi 45 . . 3 (¬ (⌊‘𝐴) = 𝐴 → (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ)))
3812, 37pm2.61i 176 . 2 (𝐴 ∈ ℝ → ((⌊‘𝐴) = (⌈‘𝐴) → 𝐴 ∈ ℤ))
393, 38impbid2 216 1 (𝐴 ∈ ℝ → (𝐴 ∈ ℤ ↔ (⌊‘𝐴) = (⌈‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4623  cfv 5857  cr 9895   < clt 10034  cle 10035  cz 11337  cfl 12547  cceil 12548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fl 12549  df-ceil 12550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator