Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldivmod Structured version   Visualization version   GIF version

Theorem fldivmod 42841
Description: Expressing the floor of a division by the modulo operator. (Contributed by AV, 6-Jun-2020.)
Assertion
Ref Expression
fldivmod ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))

Proof of Theorem fldivmod
StepHypRef Expression
1 rerpdivcl 12074 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
21flcld 12813 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
32zcnd 11695 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
4 rpcn 12054 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
54adantl 473 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
63, 5mulcld 10272 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) · 𝐵) ∈ ℂ)
7 modcl 12886 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℝ)
87recnd 10280 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) ∈ ℂ)
96, 8pncand 10605 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = ((⌊‘(𝐴 / 𝐵)) · 𝐵))
106, 8addcld 10271 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) ∈ ℂ)
1110, 8subcld 10604 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) ∈ ℂ)
12 rpne0 12061 . . . . 5 (𝐵 ∈ ℝ+𝐵 ≠ 0)
1312adantl 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
1411, 3, 5, 13divmul3d 11047 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = ((⌊‘(𝐴 / 𝐵)) · 𝐵)))
159, 14mpbird 247 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = (⌊‘(𝐴 / 𝐵)))
16 flpmodeq 12887 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) = 𝐴)
1716oveq1d 6829 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) = (𝐴 − (𝐴 mod 𝐵)))
1817oveq1d 6829 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((((⌊‘(𝐴 / 𝐵)) · 𝐵) + (𝐴 mod 𝐵)) − (𝐴 mod 𝐵)) / 𝐵) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
1915, 18eqtr3d 2796 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) = ((𝐴 − (𝐴 mod 𝐵)) / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148   + caddc 10151   · cmul 10153  cmin 10478   / cdiv 10896  +crp 12045  cfl 12805   mod cmo 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-fl 12807  df-mod 12883
This theorem is referenced by:  dignn0flhalflem1  42937
  Copyright terms: Public domain W3C validator