MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4lem1div2uz2 Structured version   Visualization version   GIF version

Theorem fldiv4lem1div2uz2 12823
Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
fldiv4lem1div2uz2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4lem1div2uz2
StepHypRef Expression
1 eluzelz 11881 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
2 zre 11565 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 id 22 . . . . 5 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
4 4re 11281 . . . . . 6 4 ∈ ℝ
54a1i 11 . . . . 5 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6 4ne0 11301 . . . . . 6 4 ≠ 0
76a1i 11 . . . . 5 (𝑁 ∈ ℝ → 4 ≠ 0)
83, 5, 7redivcld 11037 . . . 4 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
92, 8syl 17 . . 3 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
10 flle 12786 . . 3 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
111, 9, 103syl 18 . 2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
12 1red 10239 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
13 eluzelre 11882 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
14 rehalfcl 11442 . . . . 5 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
151, 2, 143syl 18 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ∈ ℝ)
16 2rp 12022 . . . . . . 7 2 ∈ ℝ+
1716a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
18 eluzle 11884 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
19 divge1 12083 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ≤ (𝑁 / 2))
2017, 13, 18, 19syl3anc 1473 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 / 2))
21 eluzelcn 11883 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
22 subhalfhalf 11450 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2321, 22syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2420, 23breqtrrd 4824 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 − (𝑁 / 2)))
2512, 13, 15, 24lesubd 10815 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ≤ (𝑁 − 1))
26 2t2e4 11361 . . . . . . . . 9 (2 · 2) = 4
2726eqcomi 2761 . . . . . . . 8 4 = (2 · 2)
2827a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 4 = (2 · 2))
2928oveq2d 6821 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = (𝑁 / (2 · 2)))
30 2cnne0 11426 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
3130a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
32 divdiv1 10920 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3321, 31, 31, 32syl3anc 1473 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3429, 33eqtr4d 2789 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = ((𝑁 / 2) / 2))
3534breq1d 4806 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
36 peano2rem 10532 . . . . . . 7 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
37 2re 11274 . . . . . . . . 9 2 ∈ ℝ
38 2pos 11296 . . . . . . . . 9 0 < 2
3937, 38pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
4039a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → (2 ∈ ℝ ∧ 0 < 2))
4114, 36, 403jca 1122 . . . . . 6 (𝑁 ∈ ℝ → ((𝑁 / 2) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
421, 2, 413syl 18 . . . . 5 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)))
43 lediv1 11072 . . . . 5 (((𝑁 / 2) ∈ ℝ ∧ (𝑁 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
4442, 43syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
4535, 44bitr4d 271 . . 3 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ (𝑁 / 2) ≤ (𝑁 − 1)))
4625, 45mpbird 247 . 2 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) ≤ ((𝑁 − 1) / 2))
478flcld 12785 . . . . . 6 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
4847zred 11666 . . . . 5 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
4936rehalfcld 11463 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
5048, 8, 493jca 1122 . . . 4 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
511, 2, 503syl 18 . . 3 (𝑁 ∈ (ℤ‘2) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
52 letr 10315 . . 3 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → (((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ∧ (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)))
5351, 52syl 17 . 2 (𝑁 ∈ (ℤ‘2) → (((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ∧ (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)))
5411, 46, 53mp2and 717 1 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wne 2924   class class class wbr 4796  cfv 6041  (class class class)co 6805  cc 10118  cr 10119  0cc0 10120  1c1 10121   · cmul 10125   < clt 10258  cle 10259  cmin 10450   / cdiv 10868  2c2 11254  4c4 11256  cz 11561  cuz 11871  +crp 12017  cfl 12777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-n0 11477  df-z 11562  df-uz 11872  df-rp 12018  df-fl 12779
This theorem is referenced by:  fldiv4lem1div2  12824  gausslemma2dlem4  25285
  Copyright terms: Public domain W3C validator