Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fldhmsubc Structured version   Visualization version   GIF version

Theorem fldhmsubc 42612
Description: According to df-subc 16693, the subcategories (Subcat‘𝐶) of a category 𝐶 are subsets of the homomorphisms of 𝐶 ( see subcssc 16721 and subcss2 16724). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020.)
Hypotheses
Ref Expression
drhmsubc.c 𝐶 = (𝑈 ∩ DivRing)
drhmsubc.j 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
fldhmsubc.d 𝐷 = (𝑈 ∩ Field)
fldhmsubc.f 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
Assertion
Ref Expression
fldhmsubc (𝑈𝑉𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)))
Distinct variable groups:   𝐶,𝑟,𝑠   𝑈,𝑟,𝑠   𝑉,𝑟,𝑠   𝐷,𝑟,𝑠
Allowed substitution hints:   𝐹(𝑠,𝑟)   𝐽(𝑠,𝑟)

Proof of Theorem fldhmsubc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3939 . . . . . . 7 (𝑟 ∈ (DivRing ∩ CRing) ↔ (𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing))
21simprbi 483 . . . . . 6 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ CRing)
3 crngring 18778 . . . . . 6 (𝑟 ∈ CRing → 𝑟 ∈ Ring)
42, 3syl 17 . . . . 5 (𝑟 ∈ (DivRing ∩ CRing) → 𝑟 ∈ Ring)
5 df-field 18972 . . . . 5 Field = (DivRing ∩ CRing)
64, 5eleq2s 2857 . . . 4 (𝑟 ∈ Field → 𝑟 ∈ Ring)
76rgen 3060 . . 3 𝑟 ∈ Field 𝑟 ∈ Ring
8 fldhmsubc.d . . 3 𝐷 = (𝑈 ∩ Field)
9 fldhmsubc.f . . 3 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠))
107, 8, 9srhmsubc 42604 . 2 (𝑈𝑉𝐹 ∈ (Subcat‘(RingCat‘𝑈)))
11 inss1 3976 . . . . . . 7 (DivRing ∩ CRing) ⊆ DivRing
125, 11eqsstri 3776 . . . . . 6 Field ⊆ DivRing
13 sslin 3982 . . . . . 6 (Field ⊆ DivRing → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1412, 13ax-mp 5 . . . . 5 (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing)
1514a1i 11 . . . 4 (𝑈𝑉 → (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
16 drhmsubc.c . . . . 5 𝐶 = (𝑈 ∩ DivRing)
178, 16sseq12i 3772 . . . 4 (𝐷𝐶 ↔ (𝑈 ∩ Field) ⊆ (𝑈 ∩ DivRing))
1815, 17sylibr 224 . . 3 (𝑈𝑉𝐷𝐶)
19 ssid 3765 . . . . . 6 (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦)
2019a1i 11 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ⊆ (𝑥 RingHom 𝑦))
219a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐹 = (𝑟𝐷, 𝑠𝐷 ↦ (𝑟 RingHom 𝑠)))
22 oveq12 6823 . . . . . . 7 ((𝑟 = 𝑥𝑠 = 𝑦) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
2322adantl 473 . . . . . 6 (((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) ∧ (𝑟 = 𝑥𝑠 = 𝑦)) → (𝑟 RingHom 𝑠) = (𝑥 RingHom 𝑦))
24 simprl 811 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐷)
25 simpr 479 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐷)
2625adantl 473 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐷)
27 ovexd 6844 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥 RingHom 𝑦) ∈ V)
2821, 23, 24, 26, 27ovmpt2d 6954 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) = (𝑥 RingHom 𝑦))
29 drhmsubc.j . . . . . . 7 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠))
3029a1i 11 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝐽 = (𝑟𝐶, 𝑠𝐶 ↦ (𝑟 RingHom 𝑠)))
3114, 17mpbir 221 . . . . . . . 8 𝐷𝐶
3231sseli 3740 . . . . . . 7 (𝑥𝐷𝑥𝐶)
3332ad2antrl 766 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑥𝐶)
3431sseli 3740 . . . . . . . 8 (𝑦𝐷𝑦𝐶)
3534adantl 473 . . . . . . 7 ((𝑥𝐷𝑦𝐷) → 𝑦𝐶)
3635adantl 473 . . . . . 6 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → 𝑦𝐶)
3730, 23, 33, 36, 27ovmpt2d 6954 . . . . 5 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐽𝑦) = (𝑥 RingHom 𝑦))
3820, 28, 373sstr4d 3789 . . . 4 ((𝑈𝑉 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
3938ralrimivva 3109 . . 3 (𝑈𝑉 → ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))
40 ovex 6842 . . . . . 6 (𝑟 RingHom 𝑠) ∈ V
419, 40fnmpt2i 7408 . . . . 5 𝐹 Fn (𝐷 × 𝐷)
4241a1i 11 . . . 4 (𝑈𝑉𝐹 Fn (𝐷 × 𝐷))
4329, 40fnmpt2i 7408 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
4443a1i 11 . . . 4 (𝑈𝑉𝐽 Fn (𝐶 × 𝐶))
45 inex1g 4953 . . . . 5 (𝑈𝑉 → (𝑈 ∩ DivRing) ∈ V)
4616, 45syl5eqel 2843 . . . 4 (𝑈𝑉𝐶 ∈ V)
4742, 44, 46isssc 16701 . . 3 (𝑈𝑉 → (𝐹cat 𝐽 ↔ (𝐷𝐶 ∧ ∀𝑥𝐷𝑦𝐷 (𝑥𝐹𝑦) ⊆ (𝑥𝐽𝑦))))
4818, 39, 47mpbir2and 995 . 2 (𝑈𝑉𝐹cat 𝐽)
4916, 29drhmsubc 42608 . . 3 (𝑈𝑉𝐽 ∈ (Subcat‘(RingCat‘𝑈)))
50 eqid 2760 . . . 4 ((RingCat‘𝑈) ↾cat 𝐽) = ((RingCat‘𝑈) ↾cat 𝐽)
5150subsubc 16734 . . 3 (𝐽 ∈ (Subcat‘(RingCat‘𝑈)) → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹cat 𝐽)))
5249, 51syl 17 . 2 (𝑈𝑉 → (𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)) ↔ (𝐹 ∈ (Subcat‘(RingCat‘𝑈)) ∧ 𝐹cat 𝐽)))
5310, 48, 52mpbir2and 995 1 (𝑈𝑉𝐹 ∈ (Subcat‘((RingCat‘𝑈) ↾cat 𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  cin 3714  wss 3715   class class class wbr 4804   × cxp 5264   Fn wfn 6044  cfv 6049  (class class class)co 6814  cmpt2 6816  cat cssc 16688  cat cresc 16689  Subcatcsubc 16690  Ringcrg 18767  CRingccrg 18768   RingHom crh 18934  DivRingcdr 18969  Fieldcfield 18970  RingCatcringc 42531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-hom 16188  df-cco 16189  df-0g 16324  df-cat 16550  df-cid 16551  df-homf 16552  df-ssc 16691  df-resc 16692  df-subc 16693  df-estrc 16984  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-ghm 17879  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-rnghom 18937  df-drng 18971  df-field 18972  df-ringc 42533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator