Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelcarsg Structured version   Visualization version   GIF version

Theorem fiunelcarsg 30712
Description: The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
fiunelcarsg.1 (𝜑𝐴 ∈ Fin)
fiunelcarsg.2 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
Assertion
Ref Expression
fiunelcarsg (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem fiunelcarsg
Dummy variables 𝑎 𝑒 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4580 . . 3 (𝑎 = ∅ → 𝑎 = ∅)
2 eqidd 2771 . . 3 (𝑎 = ∅ → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
31, 2eleq12d 2843 . 2 (𝑎 = ∅ → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ ∅ ∈ (toCaraSiga‘𝑀)))
4 unieq 4580 . . 3 (𝑎 = 𝑏 𝑎 = 𝑏)
5 eqidd 2771 . . 3 (𝑎 = 𝑏 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
64, 5eleq12d 2843 . 2 (𝑎 = 𝑏 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝑏 ∈ (toCaraSiga‘𝑀)))
7 unieq 4580 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → 𝑎 = (𝑏 ∪ {𝑥}))
8 eqidd 2771 . . 3 (𝑎 = (𝑏 ∪ {𝑥}) → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
97, 8eleq12d 2843 . 2 (𝑎 = (𝑏 ∪ {𝑥}) → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
10 unieq 4580 . . 3 (𝑎 = 𝐴 𝑎 = 𝐴)
11 eqidd 2771 . . 3 (𝑎 = 𝐴 → (toCaraSiga‘𝑀) = (toCaraSiga‘𝑀))
1210, 11eleq12d 2843 . 2 (𝑎 = 𝐴 → ( 𝑎 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ (toCaraSiga‘𝑀)))
13 uni0 4599 . . . 4 ∅ = ∅
14 difid 4093 . . . 4 (𝑂𝑂) = ∅
1513, 14eqtr4i 2795 . . 3 ∅ = (𝑂𝑂)
16 carsgval.1 . . . 4 (𝜑𝑂𝑉)
17 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
18 carsgsiga.1 . . . . 5 (𝜑 → (𝑀‘∅) = 0)
1916, 17, 18baselcarsg 30702 . . . 4 (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
2016, 17, 19difelcarsg 30706 . . 3 (𝜑 → (𝑂𝑂) ∈ (toCaraSiga‘𝑀))
2115, 20syl5eqel 2853 . 2 (𝜑 ∅ ∈ (toCaraSiga‘𝑀))
22 uniun 4591 . . . . 5 (𝑏 ∪ {𝑥}) = ( 𝑏 {𝑥})
23 vex 3352 . . . . . . 7 𝑥 ∈ V
2423unisn 4587 . . . . . 6 {𝑥} = 𝑥
2524uneq2i 3913 . . . . 5 ( 𝑏 {𝑥}) = ( 𝑏𝑥)
2622, 25eqtri 2792 . . . 4 (𝑏 ∪ {𝑥}) = ( 𝑏𝑥)
2716ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑂𝑉)
2817ad2antrr 697 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
29 simpr 471 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑏 ∈ (toCaraSiga‘𝑀))
30 simpll 742 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝜑)
31 carsgsiga.2 . . . . . . 7 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
3216, 17, 18, 31carsgsigalem 30711 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
3330, 32syl3an1 1165 . . . . 5 ((((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) ∧ 𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
34 fiunelcarsg.2 . . . . . . 7 (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))
3534ad2antrr 697 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝐴 ⊆ (toCaraSiga‘𝑀))
36 simplrr 755 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (𝐴𝑏))
3736eldifad 3733 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥𝐴)
3835, 37sseldd 3751 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → 𝑥 ∈ (toCaraSiga‘𝑀))
3927, 28, 29, 33, 38unelcarsg 30708 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → ( 𝑏𝑥) ∈ (toCaraSiga‘𝑀))
4026, 39syl5eqel 2853 . . 3 (((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) ∧ 𝑏 ∈ (toCaraSiga‘𝑀)) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀))
4140ex 397 . 2 ((𝜑 ∧ (𝑏𝐴𝑥 ∈ (𝐴𝑏))) → ( 𝑏 ∈ (toCaraSiga‘𝑀) → (𝑏 ∪ {𝑥}) ∈ (toCaraSiga‘𝑀)))
42 fiunelcarsg.1 . 2 (𝜑𝐴 ∈ Fin)
433, 6, 9, 12, 21, 41, 42findcard2d 8357 1 (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  cdif 3718  cun 3719  wss 3721  c0 4061  𝒫 cpw 4295  {csn 4314   cuni 4572   class class class wbr 4784  wf 6027  cfv 6031  (class class class)co 6792  ωcom 7211  cdom 8106  Fincfn 8108  0cc0 10137  +∞cpnf 10272  cle 10276   +𝑒 cxad 12148  [,]cicc 12382  Σ*cesum 30423  toCaraSigaccarsg 30697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-ef 15003  df-sin 15005  df-cos 15006  df-pi 15008  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-ordt 16368  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-ps 17407  df-tsr 17408  df-plusf 17448  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-subrg 18987  df-abv 19026  df-lmod 19074  df-scaf 19075  df-sra 19386  df-rgmod 19387  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-tmd 22095  df-tgp 22096  df-tsms 22149  df-trg 22182  df-xms 22344  df-ms 22345  df-tms 22346  df-nm 22606  df-ngp 22607  df-nrg 22609  df-nlm 22610  df-ii 22899  df-cncf 22900  df-limc 23849  df-dv 23850  df-log 24523  df-esum 30424  df-carsg 30698
This theorem is referenced by:  carsgclctunlem1  30713  carsgclctunlem2  30715  carsgclctunlem3  30716
  Copyright terms: Public domain W3C validator