MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisupg Structured version   Visualization version   GIF version

Theorem fisupg 8363
Description: Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fisupg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem fisupg
StepHypRef Expression
1 fimaxg 8362 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
2 sotrieq2 5198 . . . . . . . . . . 11 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 ↔ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)))
32simprbda 480 . . . . . . . . . 10 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥 = 𝑦) → ¬ 𝑥𝑅𝑦)
43ex 397 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 → ¬ 𝑥𝑅𝑦))
54anassrs 458 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ¬ 𝑥𝑅𝑦))
65a1dd 50 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦)))
7 pm2.27 42 . . . . . . . 8 (𝑥𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → 𝑦𝑅𝑥))
8 so2nr 5194 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
9 pm3.21 448 . . . . . . . . . . 11 (𝑦𝑅𝑥 → (𝑥𝑅𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
109con3d 149 . . . . . . . . . 10 (𝑦𝑅𝑥 → (¬ (𝑥𝑅𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦))
118, 10syl5com 31 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦))
1211anassrs 458 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦))
137, 12syl9r 78 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦)))
146, 13pm2.61dne 3028 . . . . . 6 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦))
1514ralimdva 3110 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
16 breq2 4788 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
1716rspcev 3458 . . . . . . . 8 ((𝑥𝐴𝑦𝑅𝑥) → ∃𝑧𝐴 𝑦𝑅𝑧)
1817ex 397 . . . . . . 7 (𝑥𝐴 → (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
1918ralrimivw 3115 . . . . . 6 (𝑥𝐴 → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2019adantl 467 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2115, 20jctird 510 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
2221reximdva 3164 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
23223ad2ant1 1126 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
241, 23mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1070  wcel 2144  wne 2942  wral 3060  wrex 3061  c0 4061   class class class wbr 4784   Or wor 5169  Fincfn 8108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7212  df-1o 7712  df-er 7895  df-en 8109  df-fin 8112
This theorem is referenced by:  fisup2g  8529  fisupcl  8530  rencldnfilem  37903
  Copyright terms: Public domain W3C validator