MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiss Structured version   Visualization version   GIF version

Theorem fiss 8486
Description: Subset relationship for function fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiss ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))

Proof of Theorem fiss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sstr2 3759 . . . . . 6 (𝐴𝐵 → (𝐵𝑦𝐴𝑦))
21adantl 467 . . . . 5 ((𝐵𝑉𝐴𝐵) → (𝐵𝑦𝐴𝑦))
32anim1d 598 . . . 4 ((𝐵𝑉𝐴𝐵) → ((𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦) → (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)))
43ss2abdv 3824 . . 3 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
5 intss 4632 . . 3 ({𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
64, 5syl 17 . 2 ((𝐵𝑉𝐴𝐵) → {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)} ⊆ {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
7 ssexg 4938 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
87ancoms 455 . . 3 ((𝐵𝑉𝐴𝐵) → 𝐴 ∈ V)
9 dffi2 8485 . . 3 (𝐴 ∈ V → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
108, 9syl 17 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) = {𝑦 ∣ (𝐴𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
11 dffi2 8485 . . 3 (𝐵𝑉 → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
1211adantr 466 . 2 ((𝐵𝑉𝐴𝐵) → (fi‘𝐵) = {𝑦 ∣ (𝐵𝑦 ∧ ∀𝑥𝑦𝑧𝑦 (𝑥𝑧) ∈ 𝑦)})
136, 10, 123sstr4d 3797 1 ((𝐵𝑉𝐴𝐵) → (fi‘𝐴) ⊆ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  {cab 2757  wral 3061  Vcvv 3351  cin 3722  wss 3723   cint 4611  cfv 6031  ficfi 8472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-fin 8113  df-fi 8473
This theorem is referenced by:  fipwuni  8488  elfiun  8492  tgfiss  21016  ordtbas  21217  leordtval2  21237  lecldbas  21244  2ndcsb  21473  ptbasfi  21605  fclscmpi  22053  prdsxmslem2  22554
  Copyright terms: Public domain W3C validator