MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fislw Structured version   Visualization version   GIF version

Theorem fislw 18253
Description: The sylow subgroups of a finite group are exactly the groups which have cardinality equal to the maximum power of 𝑃 dividing the group. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
fislw.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
fislw ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))

Proof of Theorem fislw
Dummy variables 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (𝑃 pSyl 𝐺))
2 slwsubg 18238 . . . 4 (𝐻 ∈ (𝑃 pSyl 𝐺) → 𝐻 ∈ (SubGrp‘𝐺))
31, 2syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝐻 ∈ (SubGrp‘𝐺))
4 fislw.1 . . . 4 𝑋 = (Base‘𝐺)
5 simpl2 1227 . . . 4 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → 𝑋 ∈ Fin)
64, 5, 1slwhash 18252 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
73, 6jca 556 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ 𝐻 ∈ (𝑃 pSyl 𝐺)) → (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
8 simpl3 1229 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 ∈ ℙ)
9 simprl 808 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (SubGrp‘𝐺))
10 simpl2 1227 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ∈ Fin)
1110adantr 473 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑋 ∈ Fin)
12 simprl 808 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ (SubGrp‘𝐺))
134subgss 17809 . . . . . . . . 9 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘𝑋)
1412, 13syl 17 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝑋)
15 ssfi 8334 . . . . . . . 8 ((𝑋 ∈ Fin ∧ 𝑘𝑋) → 𝑘 ∈ Fin)
1611, 14, 15syl2anc 693 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ∈ Fin)
17 simprrl 820 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
18 ssdomg 8153 . . . . . . . . 9 (𝑘 ∈ Fin → (𝐻𝑘𝐻𝑘))
1916, 17, 18sylc 65 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
20 simprrr 821 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 pGrp (𝐺s 𝑘))
21 eqid 2769 . . . . . . . . . . . . . . . . . 18 (𝐺s 𝑘) = (𝐺s 𝑘)
2221subggrp 17811 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (𝐺s 𝑘) ∈ Grp)
2312, 22syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝐺s 𝑘) ∈ Grp)
2421subgbas 17812 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (SubGrp‘𝐺) → 𝑘 = (Base‘(𝐺s 𝑘)))
2512, 24syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 = (Base‘(𝐺s 𝑘)))
2625, 16eqeltrrd 2849 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (Base‘(𝐺s 𝑘)) ∈ Fin)
27 eqid 2769 . . . . . . . . . . . . . . . . 17 (Base‘(𝐺s 𝑘)) = (Base‘(𝐺s 𝑘))
2827pgpfi 18233 . . . . . . . . . . . . . . . 16 (((𝐺s 𝑘) ∈ Grp ∧ (Base‘(𝐺s 𝑘)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
2923, 26, 28syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))))
3020, 29mpbid 222 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
3130simpld 478 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℙ)
32 prmnn 15601 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3331, 32syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℕ)
3433nnred 11235 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑃 ∈ ℝ)
3533nnge1d 11263 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 1 ≤ 𝑃)
36 eqid 2769 . . . . . . . . . . . . . . . . . 18 (0g𝐺) = (0g𝐺)
3736subg0cl 17816 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ 𝑘)
3812, 37syl 17 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (0g𝐺) ∈ 𝑘)
39 ne0i 4066 . . . . . . . . . . . . . . . 16 ((0g𝐺) ∈ 𝑘𝑘 ≠ ∅)
4038, 39syl 17 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘 ≠ ∅)
41 hashnncl 13362 . . . . . . . . . . . . . . . 16 (𝑘 ∈ Fin → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4216, 41syl 17 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ∈ ℕ ↔ 𝑘 ≠ ∅))
4340, 42mpbird 247 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∈ ℕ)
4431, 43pccld 15768 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ∈ ℕ0)
4544nn0zd 11680 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ∈ ℤ)
46 simpl1 1225 . . . . . . . . . . . . . . . . 17 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐺 ∈ Grp)
474grpbn0 17665 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
4846, 47syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑋 ≠ ∅)
49 hashnncl 13362 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
5010, 49syl 17 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
5148, 50mpbird 247 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝑋) ∈ ℕ)
528, 51pccld 15768 . . . . . . . . . . . . . 14 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
5352adantr 473 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℕ0)
5453nn0zd 11680 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ ℤ)
55 oveq1 6798 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝑘)) = (𝑃 pCnt (♯‘𝑘)))
56 oveq1 6798 . . . . . . . . . . . . . 14 (𝑝 = 𝑃 → (𝑝 pCnt (♯‘𝑋)) = (𝑃 pCnt (♯‘𝑋)))
5755, 56breq12d 4796 . . . . . . . . . . . . 13 (𝑝 = 𝑃 → ((𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋)) ↔ (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋))))
584lagsubg 17870 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ Fin) → (♯‘𝑘) ∥ (♯‘𝑋))
5912, 11, 58syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∥ (♯‘𝑋))
6043nnzd 11681 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ∈ ℤ)
6151adantr 473 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑋) ∈ ℕ)
6261nnzd 11681 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑋) ∈ ℤ)
63 pc2dvds 15796 . . . . . . . . . . . . . . 15 (((♯‘𝑘) ∈ ℤ ∧ (♯‘𝑋) ∈ ℤ) → ((♯‘𝑘) ∥ (♯‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋))))
6460, 62, 63syl2anc 693 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ∥ (♯‘𝑋) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋))))
6559, 64mpbid 222 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∀𝑝 ∈ ℙ (𝑝 pCnt (♯‘𝑘)) ≤ (𝑝 pCnt (♯‘𝑋)))
6657, 65, 31rspcdva 3463 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋)))
67 eluz2 11893 . . . . . . . . . . . 12 ((𝑃 pCnt (♯‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (♯‘𝑘))) ↔ ((𝑃 pCnt (♯‘𝑘)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑋)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝑘)) ≤ (𝑃 pCnt (♯‘𝑋))))
6845, 54, 66, 67syl3anbrc 1426 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃 pCnt (♯‘𝑋)) ∈ (ℤ‘(𝑃 pCnt (♯‘𝑘))))
6934, 35, 68leexp2ad 13248 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (𝑃↑(𝑃 pCnt (♯‘𝑘))) ≤ (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7030simprd 483 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛))
7125fveq2d 6335 . . . . . . . . . . . . . 14 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) = (♯‘(Base‘(𝐺s 𝑘))))
7271eqeq1d 2771 . . . . . . . . . . . . 13 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) = (𝑃𝑛) ↔ (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7372rexbidv 3198 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝑘))) = (𝑃𝑛)))
7470, 73mpbird 247 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛))
75 pcprmpw 15800 . . . . . . . . . . . 12 ((𝑃 ∈ ℙ ∧ (♯‘𝑘) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘)))))
7631, 43, 75syl2anc 693 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (∃𝑛 ∈ ℕ0 (♯‘𝑘) = (𝑃𝑛) ↔ (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘)))))
7774, 76mpbid 222 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝑘))))
78 simplrr 817 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
7969, 77, 783brtr4d 4815 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → (♯‘𝑘) ≤ (♯‘𝐻))
804subgss 17809 . . . . . . . . . . . . 13 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
8180ad2antrl 763 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻𝑋)
82 ssfi 8334 . . . . . . . . . . . 12 ((𝑋 ∈ Fin ∧ 𝐻𝑋) → 𝐻 ∈ Fin)
8310, 81, 82syl2anc 693 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ Fin)
8483adantr 473 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 ∈ Fin)
85 hashdom 13373 . . . . . . . . . 10 ((𝑘 ∈ Fin ∧ 𝐻 ∈ Fin) → ((♯‘𝑘) ≤ (♯‘𝐻) ↔ 𝑘𝐻))
8616, 84, 85syl2anc 693 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → ((♯‘𝑘) ≤ (♯‘𝐻) ↔ 𝑘𝐻))
8779, 86mpbid 222 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝑘𝐻)
88 sbth 8234 . . . . . . . 8 ((𝐻𝑘𝑘𝐻) → 𝐻𝑘)
8919, 87, 88syl2anc 693 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻𝑘)
90 fisseneq 8325 . . . . . . 7 ((𝑘 ∈ Fin ∧ 𝐻𝑘𝐻𝑘) → 𝐻 = 𝑘)
9116, 17, 89, 90syl3anc 1474 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ (𝑘 ∈ (SubGrp‘𝐺) ∧ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘)))) → 𝐻 = 𝑘)
9291expr 641 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) → 𝐻 = 𝑘))
93 eqid 2769 . . . . . . . . . . . . 13 (𝐺s 𝐻) = (𝐺s 𝐻)
9493subgbas 17812 . . . . . . . . . . . 12 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻 = (Base‘(𝐺s 𝐻)))
9594ad2antrl 763 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 = (Base‘(𝐺s 𝐻)))
9695fveq2d 6335 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (♯‘(Base‘(𝐺s 𝐻))))
97 simprr 810 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
9896, 97eqtr3d 2805 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
99 oveq2 6799 . . . . . . . . . . 11 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → (𝑃𝑛) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))
10099eqeq2d 2779 . . . . . . . . . 10 (𝑛 = (𝑃 pCnt (♯‘𝑋)) → ((♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛) ↔ (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
101100rspcev 3457 . . . . . . . . 9 (((𝑃 pCnt (♯‘𝑋)) ∈ ℕ0 ∧ (♯‘(Base‘(𝐺s 𝐻))) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
10252, 98, 101syl2anc 693 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))
10393subggrp 17811 . . . . . . . . . 10 (𝐻 ∈ (SubGrp‘𝐺) → (𝐺s 𝐻) ∈ Grp)
104103ad2antrl 763 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝐺s 𝐻) ∈ Grp)
10595, 83eqeltrrd 2849 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (Base‘(𝐺s 𝐻)) ∈ Fin)
106 eqid 2769 . . . . . . . . . 10 (Base‘(𝐺s 𝐻)) = (Base‘(𝐺s 𝐻))
107106pgpfi 18233 . . . . . . . . 9 (((𝐺s 𝐻) ∈ Grp ∧ (Base‘(𝐺s 𝐻)) ∈ Fin) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
108104, 105, 107syl2anc 693 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘(Base‘(𝐺s 𝐻))) = (𝑃𝑛))))
1098, 102, 108mpbir2and 992 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝑃 pGrp (𝐺s 𝐻))
110109adantr 473 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → 𝑃 pGrp (𝐺s 𝐻))
111 oveq2 6799 . . . . . . . 8 (𝐻 = 𝑘 → (𝐺s 𝐻) = (𝐺s 𝑘))
112111breq2d 4795 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ 𝑃 pGrp (𝐺s 𝑘)))
113 eqimss 3803 . . . . . . . 8 (𝐻 = 𝑘𝐻𝑘)
114113biantrurd 531 . . . . . . 7 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝑘) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
115112, 114bitrd 268 . . . . . 6 (𝐻 = 𝑘 → (𝑃 pGrp (𝐺s 𝐻) ↔ (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
116110, 115syl5ibcom 235 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → (𝐻 = 𝑘 → (𝐻𝑘𝑃 pGrp (𝐺s 𝑘))))
11792, 116impbid 202 . . . 4 ((((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) ∧ 𝑘 ∈ (SubGrp‘𝐺)) → ((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
118117ralrimiva 3113 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘))
119 isslw 18236 . . 3 (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝑃 ∈ ℙ ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ ∀𝑘 ∈ (SubGrp‘𝐺)((𝐻𝑘𝑃 pGrp (𝐺s 𝑘)) ↔ 𝐻 = 𝑘)))
1208, 9, 118, 119syl3anbrc 1426 . 2 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) ∧ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) → 𝐻 ∈ (𝑃 pSyl 𝐺))
1217, 120impbida 910 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ) → (𝐻 ∈ (𝑃 pSyl 𝐺) ↔ (𝐻 ∈ (SubGrp‘𝐺) ∧ (♯‘𝐻) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1069   = wceq 1629  wcel 2143  wne 2941  wral 3059  wrex 3060  wss 3720  c0 4060   class class class wbr 4783  cfv 6030  (class class class)co 6791  cen 8104  cdom 8105  Fincfn 8107  cle 10275  cn 11220  0cn0 11492  cz 11577  cuz 11887  cexp 13067  chash 13324  cdvds 15194  cprime 15598   pCnt cpc 15754  Basecbs 16070  s cress 16071  0gc0g 16314  Grpcgrp 17636  SubGrpcsubg 17802   pGrp cpgp 18159   pSyl cslw 18160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-fal 1635  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rmo 3067  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-int 4609  df-iun 4653  df-disj 4752  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-se 5208  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-omul 7716  df-er 7894  df-ec 7896  df-qs 7900  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-oi 8569  df-card 8963  df-acn 8966  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-3 11280  df-n0 11493  df-xnn0 11564  df-z 11578  df-uz 11888  df-q 11991  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13009  df-exp 13068  df-fac 13268  df-bc 13297  df-hash 13325  df-cj 14050  df-re 14051  df-im 14052  df-sqrt 14186  df-abs 14187  df-clim 14430  df-sum 14628  df-dvds 15195  df-gcd 15431  df-prm 15599  df-pc 15755  df-ndx 16073  df-slot 16074  df-base 16076  df-sets 16077  df-ress 16078  df-plusg 16168  df-0g 16316  df-mgm 17456  df-sgrp 17498  df-mnd 17509  df-submnd 17550  df-grp 17639  df-minusg 17640  df-sbg 17641  df-mulg 17755  df-subg 17805  df-eqg 17807  df-ghm 17872  df-ga 17936  df-od 18161  df-pgp 18163  df-slw 18164
This theorem is referenced by:  sylow3lem1  18255
  Copyright terms: Public domain W3C validator