MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiprc Structured version   Visualization version   GIF version

Theorem fiprc 8080
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Assertion
Ref Expression
fiprc Fin ∉ V

Proof of Theorem fiprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnex 7008 . 2 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
2 snfi 8079 . . . . . . . 8 {𝑦} ∈ Fin
3 eleq1 2718 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin))
42, 3mpbiri 248 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 ∈ Fin)
54exlimiv 1898 . . . . . 6 (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin)
65abssi 3710 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin
7 ssexg 4837 . . . . 5 (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
86, 7mpan 706 . . . 4 (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
98con3i 150 . . 3 (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V)
10 df-nel 2927 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
11 df-nel 2927 . . 3 (Fin ∉ V ↔ ¬ Fin ∈ V)
129, 10, 113imtr4i 281 . 2 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V)
131, 12ax-mp 5 1 Fin ∉ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wnel 2926  Vcvv 3231  wss 3607  {csn 4210  Fincfn 7997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-om 7108  df-1o 7605  df-en 7998  df-fin 8001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator