Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem1 Structured version   Visualization version   GIF version

Theorem finxpreclem1 33356
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxpreclem1 (𝑋𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩))
Distinct variable groups:   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥

Proof of Theorem finxpreclem1
StepHypRef Expression
1 df-ov 6693 . 2 (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩)
2 eqidd 2652 . . 3 (𝑋𝑈 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
3 eleq1a 2725 . . . . . 6 (𝑋𝑈 → (𝑥 = 𝑋𝑥𝑈))
43anim2d 588 . . . . 5 (𝑋𝑈 → ((𝑛 = 1𝑜𝑥 = 𝑋) → (𝑛 = 1𝑜𝑥𝑈)))
5 iftrue 4125 . . . . 5 ((𝑛 = 1𝑜𝑥𝑈) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ∅)
64, 5syl6 35 . . . 4 (𝑋𝑈 → ((𝑛 = 1𝑜𝑥 = 𝑋) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ∅))
76imp 444 . . 3 ((𝑋𝑈 ∧ (𝑛 = 1𝑜𝑥 = 𝑋)) → if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ∅)
8 1onn 7764 . . . 4 1𝑜 ∈ ω
98a1i 11 . . 3 (𝑋𝑈 → 1𝑜 ∈ ω)
10 elex 3243 . . 3 (𝑋𝑈𝑋 ∈ V)
11 0ex 4823 . . . 4 ∅ ∈ V
1211a1i 11 . . 3 (𝑋𝑈 → ∅ ∈ V)
132, 7, 9, 10, 12ovmpt2d 6830 . 2 (𝑋𝑈 → (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = ∅)
141, 13syl5reqr 2700 1 (𝑋𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  c0 3948  ifcif 4119  cop 4216   cuni 4468   × cxp 5141  cfv 5926  (class class class)co 6690  cmpt2 6692  ωcom 7107  1st c1st 7208  1𝑜c1o 7598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1o 7605
This theorem is referenced by:  finxp1o  33359
  Copyright terms: Public domain W3C validator