![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp3o | Structured version Visualization version GIF version |
Description: The value of Cartesian exponentiation at three. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxp3o | ⊢ (𝑈↑↑3𝑜) = ((𝑈 × 𝑈) × 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 7732 | . . 3 ⊢ 3𝑜 = suc 2𝑜 | |
2 | finxpeq2 33553 | . . 3 ⊢ (3𝑜 = suc 2𝑜 → (𝑈↑↑3𝑜) = (𝑈↑↑suc 2𝑜)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝑈↑↑3𝑜) = (𝑈↑↑suc 2𝑜) |
4 | 2onn 7891 | . . 3 ⊢ 2𝑜 ∈ ω | |
5 | 2on0 7740 | . . 3 ⊢ 2𝑜 ≠ ∅ | |
6 | finxpsuc 33564 | . . 3 ⊢ ((2𝑜 ∈ ω ∧ 2𝑜 ≠ ∅) → (𝑈↑↑suc 2𝑜) = ((𝑈↑↑2𝑜) × 𝑈)) | |
7 | 4, 5, 6 | mp2an 710 | . 2 ⊢ (𝑈↑↑suc 2𝑜) = ((𝑈↑↑2𝑜) × 𝑈) |
8 | finxp2o 33565 | . . 3 ⊢ (𝑈↑↑2𝑜) = (𝑈 × 𝑈) | |
9 | 8 | xpeq1i 5292 | . 2 ⊢ ((𝑈↑↑2𝑜) × 𝑈) = ((𝑈 × 𝑈) × 𝑈) |
10 | 3, 7, 9 | 3eqtri 2786 | 1 ⊢ (𝑈↑↑3𝑜) = ((𝑈 × 𝑈) × 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 × cxp 5264 suc csuc 5886 ωcom 7231 2𝑜c2o 7724 3𝑜c3o 7725 ↑↑cfinxp 33549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-3o 7732 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-finxp 33550 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |