Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp0 Structured version   Visualization version   GIF version

Theorem finxp0 33358
Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp0 (𝑈↑↑∅) = ∅

Proof of Theorem finxp0
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4823 . . . . 5 ∅ ∈ V
2 vex 3234 . . . . 5 𝑦 ∈ V
31, 2opnzi 4972 . . . 4 ⟨∅, 𝑦⟩ ≠ ∅
43nesymi 2880 . . 3 ¬ ∅ = ⟨∅, 𝑦
5 peano1 7127 . . . . 5 ∅ ∈ ω
6 df-finxp 33351 . . . . . 6 (𝑈↑↑∅) = {𝑦 ∣ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅))}
76abeq2i 2764 . . . . 5 (𝑦 ∈ (𝑈↑↑∅) ↔ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅)))
85, 7mpbiran 973 . . . 4 (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅))
9 opex 4962 . . . . . 6 ⟨∅, 𝑦⟩ ∈ V
109rdg0 7562 . . . . 5 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅) = ⟨∅, 𝑦
1110eqeq2i 2663 . . . 4 (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅) ↔ ∅ = ⟨∅, 𝑦⟩)
128, 11bitri 264 . . 3 (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = ⟨∅, 𝑦⟩)
134, 12mtbir 312 . 2 ¬ 𝑦 ∈ (𝑈↑↑∅)
1413nel0 3965 1 (𝑈↑↑∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  c0 3948  ifcif 4119  cop 4216   cuni 4468   × cxp 5141  cfv 5926  cmpt2 6692  ωcom 7107  1st c1st 7208  reccrdg 7550  1𝑜c1o 7598  ↑↑cfinxp 33350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-finxp 33351
This theorem is referenced by:  finxp00  33369
  Copyright terms: Public domain W3C validator