MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds2 Structured version   Visualization version   GIF version

Theorem finds2 7136
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1 (𝑥 = ∅ → (𝜑𝜓))
finds2.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds2.4 (𝜏𝜓)
finds2.5 (𝑦 ∈ ω → (𝜏 → (𝜒𝜃)))
Assertion
Ref Expression
finds2 (𝑥 ∈ ω → (𝜏𝜑))
Distinct variable groups:   𝑥,𝑦,𝜏   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5 (𝜏𝜓)
2 0ex 4823 . . . . . 6 ∅ ∈ V
3 finds2.1 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜓))
43imbi2d 329 . . . . . 6 (𝑥 = ∅ → ((𝜏𝜑) ↔ (𝜏𝜓)))
52, 4elab 3382 . . . . 5 (∅ ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜓))
61, 5mpbir 221 . . . 4 ∅ ∈ {𝑥 ∣ (𝜏𝜑)}
7 finds2.5 . . . . . . 7 (𝑦 ∈ ω → (𝜏 → (𝜒𝜃)))
87a2d 29 . . . . . 6 (𝑦 ∈ ω → ((𝜏𝜒) → (𝜏𝜃)))
9 vex 3234 . . . . . . 7 𝑦 ∈ V
10 finds2.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1110imbi2d 329 . . . . . . 7 (𝑥 = 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜒)))
129, 11elab 3382 . . . . . 6 (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜒))
139sucex 7053 . . . . . . 7 suc 𝑦 ∈ V
14 finds2.3 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝜑𝜃))
1514imbi2d 329 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜃)))
1613, 15elab 3382 . . . . . 6 (suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜃))
178, 12, 163imtr4g 285 . . . . 5 (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)}))
1817rgen 2951 . . . 4 𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)})
19 peano5 7131 . . . 4 ((∅ ∈ {𝑥 ∣ (𝜏𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏𝜑)})
206, 18, 19mp2an 708 . . 3 ω ⊆ {𝑥 ∣ (𝜏𝜑)}
2120sseli 3632 . 2 (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏𝜑)})
22 abid 2639 . 2 (𝑥 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜑))
2321, 22sylib 208 1 (𝑥 ∈ ω → (𝜏𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wss 3607  c0 3948  suc csuc 5763  ωcom 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-om 7108
This theorem is referenced by:  finds1  7137  onnseq  7486  nnacl  7736  nnmcl  7737  nnecl  7738  nnacom  7742  nnaass  7747  nndi  7748  nnmass  7749  nnmsucr  7750  nnmcom  7751  nnmordi  7756  omsmolem  7778  isinf  8214  unblem2  8254  fiint  8278  dffi3  8378  card2inf  8501  cantnfle  8606  cantnflt  8607  cantnflem1  8624  cnfcom  8635  trcl  8642  fseqenlem1  8885  infpssrlem3  9165  fin23lem26  9185  axdc3lem2  9311  axdc4lem  9315  axdclem2  9380  wunr1om  9579  wuncval2  9607  tskr1om  9627  grothomex  9689  peano5nni  11061  neibastop2lem  32480  finxpreclem6  33363
  Copyright terms: Public domain W3C validator