![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finds | Structured version Visualization version GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
finds.5 | ⊢ 𝜓 |
finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
finds | ⊢ (𝐴 ∈ ω → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
2 | 0ex 4823 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | elab 3382 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
5 | 1, 4 | mpbir 221 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
7 | vex 3234 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
9 | 7, 8 | elab 3382 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
10 | 7 | sucex 7053 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
12 | 10, 11 | elab 3382 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
13 | 6, 9, 12 | 3imtr4g 285 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
14 | 13 | rgen 2951 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
15 | peano5 7131 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
16 | 5, 14, 15 | mp2an 708 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
17 | 16 | sseli 3632 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
19 | 18 | elabg 3383 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
20 | 17, 19 | mpbid 222 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 {cab 2637 ∀wral 2941 ⊆ wss 3607 ∅c0 3948 suc csuc 5763 ωcom 7107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-om 7108 |
This theorem is referenced by: findsg 7135 findes 7138 seqomlem1 7590 nna0r 7734 nnm0r 7735 nnawordi 7746 nneob 7777 nneneq 8184 pssnn 8219 inf3lem1 8563 inf3lem2 8564 cantnfval2 8604 cantnfp1lem3 8615 r1fin 8674 ackbij1lem14 9093 ackbij1lem16 9095 ackbij1 9098 ackbij2lem2 9100 ackbij2lem3 9101 infpssrlem4 9166 fin23lem14 9193 fin23lem34 9206 itunitc1 9280 ituniiun 9282 om2uzuzi 12788 om2uzlti 12789 om2uzrdg 12795 uzrdgxfr 12806 hashgadd 13204 mreexexd 16355 mreexexdOLD 16356 trpredmintr 31855 findfvcl 32576 finxp00 33369 |
Copyright terms: Public domain | W3C validator |