MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard Structured version   Visualization version   GIF version

Theorem findcard 8355
Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
findcard.1 (𝑥 = ∅ → (𝜑𝜓))
findcard.2 (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))
findcard.3 (𝑥 = 𝑦 → (𝜑𝜃))
findcard.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard.5 𝜓
findcard.6 (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))
Assertion
Ref Expression
findcard (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 8133 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 4790 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 330 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 2001 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 4790 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 330 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 2001 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 4790 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 330 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 2001 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 8172 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard.5 . . . . . . . . 9 𝜓
14 findcard.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 248 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 207 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1870 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 peano2 7233 . . . . . . . . . . . . 13 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
19 breq2 4790 . . . . . . . . . . . . . 14 (𝑤 = suc 𝑣 → (𝑦𝑤𝑦 ≈ suc 𝑣))
2019rspcev 3460 . . . . . . . . . . . . 13 ((suc 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦𝑤)
2118, 20sylan 569 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦𝑤)
22 isfi 8133 . . . . . . . . . . . 12 (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦𝑤)
2321, 22sylibr 224 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin)
24233adant2 1125 . . . . . . . . . 10 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin)
25 dif1en 8349 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣𝑧𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣)
26253expa 1111 . . . . . . . . . . . . . . 15 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣)
27 vex 3354 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
28 difexg 4942 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → (𝑦 ∖ {𝑧}) ∈ V)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑦 ∖ {𝑧}) ∈ V
30 breq1 4789 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥𝑣 ↔ (𝑦 ∖ {𝑧}) ≈ 𝑣))
31 findcard.2 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))
3230, 31imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥𝑣𝜑) ↔ ((𝑦 ∖ {𝑧}) ≈ 𝑣𝜒)))
3329, 32spcv 3450 . . . . . . . . . . . . . . 15 (∀𝑥(𝑥𝑣𝜑) → ((𝑦 ∖ {𝑧}) ≈ 𝑣𝜒))
3426, 33syl5com 31 . . . . . . . . . . . . . 14 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧𝑦) → (∀𝑥(𝑥𝑣𝜑) → 𝜒))
3534ralrimdva 3118 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → (∀𝑥(𝑥𝑣𝜑) → ∀𝑧𝑦 𝜒))
3635imp 393 . . . . . . . . . . . 12 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ ∀𝑥(𝑥𝑣𝜑)) → ∀𝑧𝑦 𝜒)
3736an32s 631 . . . . . . . . . . 11 (((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑)) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧𝑦 𝜒)
38373impa 1100 . . . . . . . . . 10 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧𝑦 𝜒)
39 findcard.6 . . . . . . . . . 10 (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))
4024, 38, 39sylc 65 . . . . . . . . 9 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝜃)
41403exp 1112 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑦 ≈ suc 𝑣𝜃)))
4241alrimdv 2009 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑦(𝑦 ≈ suc 𝑣𝜃)))
43 breq1 4789 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑣𝑦 ≈ suc 𝑣))
44 findcard.3 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜃))
4543, 44imbi12d 333 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑦 ≈ suc 𝑣𝜃)))
4645cbvalvw 2125 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑦(𝑦 ≈ suc 𝑣𝜃))
4742, 46syl6ibr 242 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
485, 8, 11, 17, 47finds1 7242 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
494819.21bi 2213 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
5049rexlimiv 3175 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
512, 50sylbi 207 . 2 (𝑥 ∈ Fin → 𝜑)
521, 51vtoclga 3423 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wal 1629   = wceq 1631  wcel 2145  wral 3061  wrex 3062  Vcvv 3351  cdif 3720  c0 4063  {csn 4316   class class class wbr 4786  suc csuc 5868  ωcom 7212  cen 8106  Fincfn 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7213  df-1o 7713  df-er 7896  df-en 8110  df-fin 8113
This theorem is referenced by:  xpfi  8387
  Copyright terms: Public domain W3C validator