![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fincmp | Structured version Visualization version GIF version |
Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
fincmp | ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3976 | . . 3 ⊢ (Top ∩ Fin) ⊆ Top | |
2 | 1 | sseli 3740 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top) |
3 | inss2 3977 | . . . 4 ⊢ (Top ∩ Fin) ⊆ Fin | |
4 | 3 | sseli 3740 | . . 3 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin) |
5 | vex 3343 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | 5 | pwid 4318 | . . . . 5 ⊢ 𝑦 ∈ 𝒫 𝑦 |
7 | selpw 4309 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽) | |
8 | ssfi 8347 | . . . . . 6 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ⊆ 𝐽) → 𝑦 ∈ Fin) | |
9 | 7, 8 | sylan2b 493 | . . . . 5 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin) |
10 | elin 3939 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin)) | |
11 | unieq 4596 | . . . . . . . . 9 ⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦) | |
12 | 11 | eqeq2d 2770 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → (∪ 𝐽 = ∪ 𝑧 ↔ ∪ 𝐽 = ∪ 𝑦)) |
13 | 12 | rspcev 3449 | . . . . . . 7 ⊢ ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∪ 𝐽 = ∪ 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) |
14 | 13 | ex 449 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
15 | 10, 14 | sylbir 225 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
16 | 6, 9, 15 | sylancr 698 | . . . 4 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
17 | 16 | ralrimiva 3104 | . . 3 ⊢ (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
18 | 4, 17 | syl 17 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
19 | eqid 2760 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
20 | 19 | iscmp 21413 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
21 | 2, 18, 20 | sylanbrc 701 | 1 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ∩ cin 3714 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 Fincfn 8123 Topctop 20920 Compccmp 21411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-om 7232 df-er 7913 df-en 8124 df-fin 8127 df-cmp 21412 |
This theorem is referenced by: 0cmp 21419 discmp 21423 1stckgenlem 21578 ptcmpfi 21838 kelac2lem 38154 |
Copyright terms: Public domain | W3C validator |