![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin56 | Structured version Visualization version GIF version |
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin56 | ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 399 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜)) | |
2 | sdom2en01 9308 | . . . . 5 ⊢ (𝐴 ≺ 2𝑜 ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜)) | |
3 | 1, 2 | sylibr 224 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 ≺ 2𝑜) |
4 | 3 | orcd 406 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
5 | onfin2 8309 | . . . . . . . 8 ⊢ ω = (On ∩ Fin) | |
6 | inss2 3969 | . . . . . . . 8 ⊢ (On ∩ Fin) ⊆ Fin | |
7 | 5, 6 | eqsstri 3768 | . . . . . . 7 ⊢ ω ⊆ Fin |
8 | 2onn 7881 | . . . . . . 7 ⊢ 2𝑜 ∈ ω | |
9 | 7, 8 | sselii 3733 | . . . . . 6 ⊢ 2𝑜 ∈ Fin |
10 | relsdom 8120 | . . . . . . 7 ⊢ Rel ≺ | |
11 | 10 | brrelexi 5307 | . . . . . 6 ⊢ (𝐴 ≺ (𝐴 +𝑐 𝐴) → 𝐴 ∈ V) |
12 | fidomtri 9001 | . . . . . 6 ⊢ ((2𝑜 ∈ Fin ∧ 𝐴 ∈ V) → (2𝑜 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2𝑜)) | |
13 | 9, 11, 12 | sylancr 698 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 +𝑐 𝐴) → (2𝑜 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2𝑜)) |
14 | xp2cda 9186 | . . . . . . . . . 10 ⊢ (𝐴 ∈ V → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴)) | |
15 | 11, 14 | syl 17 | . . . . . . . . 9 ⊢ (𝐴 ≺ (𝐴 +𝑐 𝐴) → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴)) |
16 | 15 | adantr 472 | . . . . . . . 8 ⊢ ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ 2𝑜 ≼ 𝐴) → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴)) |
17 | xpdom2g 8213 | . . . . . . . . 9 ⊢ ((𝐴 ∈ V ∧ 2𝑜 ≼ 𝐴) → (𝐴 × 2𝑜) ≼ (𝐴 × 𝐴)) | |
18 | 11, 17 | sylan 489 | . . . . . . . 8 ⊢ ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ 2𝑜 ≼ 𝐴) → (𝐴 × 2𝑜) ≼ (𝐴 × 𝐴)) |
19 | 16, 18 | eqbrtrrd 4820 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ 2𝑜 ≼ 𝐴) → (𝐴 +𝑐 𝐴) ≼ (𝐴 × 𝐴)) |
20 | sdomdomtr 8250 | . . . . . . 7 ⊢ ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ (𝐴 +𝑐 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴)) | |
21 | 19, 20 | syldan 488 | . . . . . 6 ⊢ ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ 2𝑜 ≼ 𝐴) → 𝐴 ≺ (𝐴 × 𝐴)) |
22 | 21 | ex 449 | . . . . 5 ⊢ (𝐴 ≺ (𝐴 +𝑐 𝐴) → (2𝑜 ≼ 𝐴 → 𝐴 ≺ (𝐴 × 𝐴))) |
23 | 13, 22 | sylbird 250 | . . . 4 ⊢ (𝐴 ≺ (𝐴 +𝑐 𝐴) → (¬ 𝐴 ≺ 2𝑜 → 𝐴 ≺ (𝐴 × 𝐴))) |
24 | 23 | orrd 392 | . . 3 ⊢ (𝐴 ≺ (𝐴 +𝑐 𝐴) → (𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
25 | 4, 24 | jaoi 393 | . 2 ⊢ ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)) → (𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴))) |
26 | isfin5 9305 | . 2 ⊢ (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴))) | |
27 | isfin6 9306 | . 2 ⊢ (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2𝑜 ∨ 𝐴 ≺ (𝐴 × 𝐴))) | |
28 | 25, 26, 27 | 3imtr4i 281 | 1 ⊢ (𝐴 ∈ FinV → 𝐴 ∈ FinVI) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ∩ cin 3706 ∅c0 4050 class class class wbr 4796 × cxp 5256 Oncon0 5876 (class class class)co 6805 ωcom 7222 1𝑜c1o 7714 2𝑜c2o 7715 ≈ cen 8110 ≼ cdom 8111 ≺ csdm 8112 Fincfn 8113 +𝑐 ccda 9173 FinVcfin5 9288 FinVIcfin6 9289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1o 7721 df-2o 7722 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-cda 9174 df-fin5 9295 df-fin6 9296 |
This theorem is referenced by: fin2so 33701 |
Copyright terms: Public domain | W3C validator |