MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin2i2 Structured version   Visualization version   GIF version

Theorem fin2i2 9332
Description: A II-finite set contains minimal elements for every nonempty chain. (Contributed by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
fin2i2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)

Proof of Theorem fin2i2
Dummy variables 𝑐 𝑚 𝑛 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 809 . . 3 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵 ⊆ 𝒫 𝐴)
2 simpll 807 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐴 ∈ FinII)
3 ssrab2 3828 . . . . . 6 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴
43a1i 11 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴)
5 simprl 811 . . . . . 6 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵 ≠ ∅)
6 fin23lem7 9330 . . . . . 6 ((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅)
72, 1, 5, 6syl3anc 1477 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅)
8 sorpsscmpl 7113 . . . . . 6 ( [] Or 𝐵 → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
98ad2antll 767 . . . . 5 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
10 fin2i 9309 . . . . 5 (((𝐴 ∈ FinII ∧ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ⊆ 𝒫 𝐴) ∧ ({𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ≠ ∅ ∧ [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
112, 4, 7, 9, 10syl22anc 1478 . . . 4 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵})
12 sorpssuni 7111 . . . . 5 ( [] Or {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}))
139, 12syl 17 . . . 4 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}))
1411, 13mpbird 247 . . 3 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → ∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛)
15 psseq2 3837 . . . 4 (𝑧 = (𝐴𝑚) → (𝑤𝑧𝑤 ⊊ (𝐴𝑚)))
16 psseq2 3837 . . . 4 (𝑛 = (𝐴𝑤) → (𝑚𝑛𝑚 ⊊ (𝐴𝑤)))
17 pssdifcom2 4199 . . . 4 ((𝑚𝐴𝑤𝐴) → (𝑤 ⊊ (𝐴𝑚) ↔ 𝑚 ⊊ (𝐴𝑤)))
1815, 16, 17fin23lem11 9331 . . 3 (𝐵 ⊆ 𝒫 𝐴 → (∃𝑚 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵}∀𝑛 ∈ {𝑐 ∈ 𝒫 𝐴 ∣ (𝐴𝑐) ∈ 𝐵} ¬ 𝑚𝑛 → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧))
191, 14, 18sylc 65 . 2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧)
20 sorpssint 7112 . . 3 ( [] Or 𝐵 → (∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 𝐵𝐵))
2120ad2antll 767 . 2 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → (∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑧 𝐵𝐵))
2219, 21mpbid 222 1 (((𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [] Or 𝐵)) → 𝐵𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2139  wne 2932  wral 3050  wrex 3051  {crab 3054  cdif 3712  wss 3715  wpss 3716  c0 4058  𝒫 cpw 4302   cuni 4588   cint 4627   Or wor 5186   [] crpss 7101  FinIIcfin2 9293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-opab 4865  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-rpss 7102  df-fin2 9300
This theorem is referenced by:  isfin2-2  9333  fin23lem40  9365  fin2so  33709
  Copyright terms: Public domain W3C validator