![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin2i | Structured version Visualization version GIF version |
Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
fin2i | ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵)) → ∪ 𝐵 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3005 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
2 | soeq2 5190 | . . . . 5 ⊢ (𝑦 = 𝐵 → ( [⊊] Or 𝑦 ↔ [⊊] Or 𝐵)) | |
3 | 1, 2 | anbi12d 616 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) ↔ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵))) |
4 | unieq 4582 | . . . . 5 ⊢ (𝑦 = 𝐵 → ∪ 𝑦 = ∪ 𝐵) | |
5 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
6 | 4, 5 | eleq12d 2844 | . . . 4 ⊢ (𝑦 = 𝐵 → (∪ 𝑦 ∈ 𝑦 ↔ ∪ 𝐵 ∈ 𝐵)) |
7 | 3, 6 | imbi12d 333 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦) ↔ ((𝐵 ≠ ∅ ∧ [⊊] Or 𝐵) → ∪ 𝐵 ∈ 𝐵))) |
8 | isfin2 9318 | . . . . 5 ⊢ (𝐴 ∈ FinII → (𝐴 ∈ FinII ↔ ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦))) | |
9 | 8 | ibi 256 | . . . 4 ⊢ (𝐴 ∈ FinII → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)) |
10 | 9 | adantr 466 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → ∀𝑦 ∈ 𝒫 𝒫 𝐴((𝑦 ≠ ∅ ∧ [⊊] Or 𝑦) → ∪ 𝑦 ∈ 𝑦)) |
11 | pwexg 4980 | . . . . 5 ⊢ (𝐴 ∈ FinII → 𝒫 𝐴 ∈ V) | |
12 | elpw2g 4958 | . . . . 5 ⊢ (𝒫 𝐴 ∈ V → (𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴)) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ FinII → (𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴)) |
14 | 13 | biimpar 463 | . . 3 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → 𝐵 ∈ 𝒫 𝒫 𝐴) |
15 | 7, 10, 14 | rspcdva 3466 | . 2 ⊢ ((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) → ((𝐵 ≠ ∅ ∧ [⊊] Or 𝐵) → ∪ 𝐵 ∈ 𝐵)) |
16 | 15 | imp 393 | 1 ⊢ (((𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴) ∧ (𝐵 ≠ ∅ ∧ [⊊] Or 𝐵)) → ∪ 𝐵 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 Vcvv 3351 ⊆ wss 3723 ∅c0 4063 𝒫 cpw 4297 ∪ cuni 4574 Or wor 5169 [⊊] crpss 7083 FinIIcfin2 9303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-pow 4974 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-v 3353 df-in 3730 df-ss 3737 df-pw 4299 df-uni 4575 df-po 5170 df-so 5171 df-fin2 9310 |
This theorem is referenced by: fin2i2 9342 ssfin2 9344 enfin2i 9345 fin1a2lem13 9436 |
Copyright terms: Public domain | W3C validator |