MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem41 Structured version   Visualization version   GIF version

Theorem fin23lem41 9375
Description: Lemma for fin23 9412. A set which satisfies the descending sequence condition must be III-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem40.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem41 (𝐴𝐹𝐴 ∈ FinIII)
Distinct variable groups:   𝑔,𝑎,𝑥,𝐴   𝐹,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑔)

Proof of Theorem fin23lem41
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8119 . . . . 5 (ω ≼ 𝒫 𝐴 → ∃𝑏 𝑏:ω–1-1→𝒫 𝐴)
2 fin23lem40.f . . . . . . . . . 10 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
32fin23lem33 9368 . . . . . . . . 9 (𝐴𝐹 → ∃𝑐𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)))
43adantl 467 . . . . . . . 8 ((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) → ∃𝑐𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)))
5 ssv 3772 . . . . . . . . . . 11 𝒫 𝐴 ⊆ V
6 f1ss 6246 . . . . . . . . . . 11 ((𝑏:ω–1-1→𝒫 𝐴 ∧ 𝒫 𝐴 ⊆ V) → 𝑏:ω–1-1→V)
75, 6mpan2 663 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴𝑏:ω–1-1→V)
87ad2antrr 697 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → 𝑏:ω–1-1→V)
9 f1f 6241 . . . . . . . . . . . 12 (𝑏:ω–1-1→𝒫 𝐴𝑏:ω⟶𝒫 𝐴)
10 frn 6193 . . . . . . . . . . . 12 (𝑏:ω⟶𝒫 𝐴 → ran 𝑏 ⊆ 𝒫 𝐴)
11 uniss 4593 . . . . . . . . . . . 12 (ran 𝑏 ⊆ 𝒫 𝐴 ran 𝑏 𝒫 𝐴)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝑏:ω–1-1→𝒫 𝐴 ran 𝑏 𝒫 𝐴)
13 unipw 5046 . . . . . . . . . . 11 𝒫 𝐴 = 𝐴
1412, 13syl6sseq 3798 . . . . . . . . . 10 (𝑏:ω–1-1→𝒫 𝐴 ran 𝑏𝐴)
1514ad2antrr 697 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ran 𝑏𝐴)
16 f1eq1 6236 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → (𝑑:ω–1-1→V ↔ 𝑒:ω–1-1→V))
17 rneq 5489 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → ran 𝑑 = ran 𝑒)
1817unieqd 4582 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 ran 𝑑 = ran 𝑒)
1918sseq1d 3779 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ( ran 𝑑𝐴 ran 𝑒𝐴))
2016, 19anbi12d 608 . . . . . . . . . . . . 13 (𝑑 = 𝑒 → ((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) ↔ (𝑒:ω–1-1→V ∧ ran 𝑒𝐴)))
21 fveq2 6332 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (𝑐𝑑) = (𝑐𝑒))
22 f1eq1 6236 . . . . . . . . . . . . . . 15 ((𝑐𝑑) = (𝑐𝑒) → ((𝑐𝑑):ω–1-1→V ↔ (𝑐𝑒):ω–1-1→V))
2321, 22syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ((𝑐𝑑):ω–1-1→V ↔ (𝑐𝑒):ω–1-1→V))
2421rneqd 5491 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑒 → ran (𝑐𝑑) = ran (𝑐𝑒))
2524unieqd 4582 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 ran (𝑐𝑑) = ran (𝑐𝑒))
2625, 18psseq12d 3849 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → ( ran (𝑐𝑑) ⊊ ran 𝑑 ran (𝑐𝑒) ⊊ ran 𝑒))
2723, 26anbi12d 608 . . . . . . . . . . . . 13 (𝑑 = 𝑒 → (((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑) ↔ ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
2820, 27imbi12d 333 . . . . . . . . . . . 12 (𝑑 = 𝑒 → (((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) ↔ ((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒))))
2928cbvalv 2433 . . . . . . . . . . 11 (∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) ↔ ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
3029biimpi 206 . . . . . . . . . 10 (∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑)) → ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
3130adantl 467 . . . . . . . . 9 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ∀𝑒((𝑒:ω–1-1→V ∧ ran 𝑒𝐴) → ((𝑐𝑒):ω–1-1→V ∧ ran (𝑐𝑒) ⊊ ran 𝑒)))
32 eqid 2770 . . . . . . . . 9 (rec(𝑐, 𝑏) ↾ ω) = (rec(𝑐, 𝑏) ↾ ω)
332, 8, 15, 31, 32fin23lem39 9373 . . . . . . . 8 (((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) ∧ ∀𝑑((𝑑:ω–1-1→V ∧ ran 𝑑𝐴) → ((𝑐𝑑):ω–1-1→V ∧ ran (𝑐𝑑) ⊊ ran 𝑑))) → ¬ 𝐴𝐹)
344, 33exlimddv 2014 . . . . . . 7 ((𝑏:ω–1-1→𝒫 𝐴𝐴𝐹) → ¬ 𝐴𝐹)
3534pm2.01da 792 . . . . . 6 (𝑏:ω–1-1→𝒫 𝐴 → ¬ 𝐴𝐹)
3635exlimiv 2009 . . . . 5 (∃𝑏 𝑏:ω–1-1→𝒫 𝐴 → ¬ 𝐴𝐹)
371, 36syl 17 . . . 4 (ω ≼ 𝒫 𝐴 → ¬ 𝐴𝐹)
3837con2i 136 . . 3 (𝐴𝐹 → ¬ ω ≼ 𝒫 𝐴)
39 pwexg 4978 . . . 4 (𝐴𝐹 → 𝒫 𝐴 ∈ V)
40 isfin4-2 9337 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
4139, 40syl 17 . . 3 (𝐴𝐹 → (𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴))
4238, 41mpbird 247 . 2 (𝐴𝐹 → 𝒫 𝐴 ∈ FinIV)
43 isfin3 9319 . 2 (𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV)
4442, 43sylibr 224 1 (𝐴𝐹𝐴 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wal 1628   = wceq 1630  wex 1851  wcel 2144  {cab 2756  wral 3060  Vcvv 3349  wss 3721  wpss 3722  𝒫 cpw 4295   cuni 4572   cint 4609   class class class wbr 4784  ran crn 5250  cres 5251  suc csuc 5868  wf 6027  1-1wf1 6028  cfv 6031  (class class class)co 6792  ωcom 7211  reccrdg 7657  𝑚 cmap 8008  cdom 8106  FinIVcfin4 9303  FinIIIcfin3 9304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-seqom 7695  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-fin4 9310  df-fin3 9311
This theorem is referenced by:  isf33lem  9389
  Copyright terms: Public domain W3C validator