MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem39 Structured version   Visualization version   GIF version

Theorem fin23lem39 9210
Description: Lemma for fin23 9249. Thus, we have that 𝑔 could not have been in 𝐹 after all. (Contributed by Stefan O'Rear, 4-Nov-2014.)
Hypotheses
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.f (𝜑:ω–1-1→V)
fin23lem.g (𝜑 ran 𝐺)
fin23lem.h (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
fin23lem.i 𝑌 = (rec(𝑖, ) ↾ ω)
Assertion
Ref Expression
fin23lem39 (𝜑 → ¬ 𝐺𝐹)
Distinct variable groups:   𝑔,𝑎,𝑖,𝑗,𝑥,,𝐺   𝐹,𝑎   𝜑,𝑎,𝑗   𝑌,𝑎,𝑗
Allowed substitution hints:   𝜑(𝑥,𝑔,,𝑖)   𝐹(𝑥,𝑔,,𝑖,𝑗)   𝑌(𝑥,𝑔,,𝑖)

Proof of Theorem fin23lem39
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin23lem33.f . . 3 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
2 fin23lem.f . . 3 (𝜑:ω–1-1→V)
3 fin23lem.g . . 3 (𝜑 ran 𝐺)
4 fin23lem.h . . 3 (𝜑 → ∀𝑗((𝑗:ω–1-1→V ∧ ran 𝑗𝐺) → ((𝑖𝑗):ω–1-1→V ∧ ran (𝑖𝑗) ⊊ ran 𝑗)))
5 fin23lem.i . . 3 𝑌 = (rec(𝑖, ) ↾ ω)
61, 2, 3, 4, 5fin23lem38 9209 . 2 (𝜑 → ¬ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))
71, 2, 3, 4, 5fin23lem34 9206 . . . . . . . 8 ((𝜑𝑐 ∈ ω) → ((𝑌𝑐):ω–1-1→V ∧ ran (𝑌𝑐) ⊆ 𝐺))
87simprd 478 . . . . . . 7 ((𝜑𝑐 ∈ ω) → ran (𝑌𝑐) ⊆ 𝐺)
98adantlr 751 . . . . . 6 (((𝜑𝐺𝐹) ∧ 𝑐 ∈ ω) → ran (𝑌𝑐) ⊆ 𝐺)
10 elpw2g 4857 . . . . . . 7 (𝐺𝐹 → ( ran (𝑌𝑐) ∈ 𝒫 𝐺 ran (𝑌𝑐) ⊆ 𝐺))
1110ad2antlr 763 . . . . . 6 (((𝜑𝐺𝐹) ∧ 𝑐 ∈ ω) → ( ran (𝑌𝑐) ∈ 𝒫 𝐺 ran (𝑌𝑐) ⊆ 𝐺))
129, 11mpbird 247 . . . . 5 (((𝜑𝐺𝐹) ∧ 𝑐 ∈ ω) → ran (𝑌𝑐) ∈ 𝒫 𝐺)
13 eqid 2651 . . . . 5 (𝑐 ∈ ω ↦ ran (𝑌𝑐)) = (𝑐 ∈ ω ↦ ran (𝑌𝑐))
1412, 13fmptd 6425 . . . 4 ((𝜑𝐺𝐹) → (𝑐 ∈ ω ↦ ran (𝑌𝑐)):ω⟶𝒫 𝐺)
15 pwexg 4880 . . . . 5 (𝐺𝐹 → 𝒫 𝐺 ∈ V)
16 vex 3234 . . . . . . 7 ∈ V
17 f1f 6139 . . . . . . 7 (:ω–1-1→V → :ω⟶V)
18 dmfex 7166 . . . . . . 7 (( ∈ V ∧ :ω⟶V) → ω ∈ V)
1916, 17, 18sylancr 696 . . . . . 6 (:ω–1-1→V → ω ∈ V)
202, 19syl 17 . . . . 5 (𝜑 → ω ∈ V)
21 elmapg 7912 . . . . 5 ((𝒫 𝐺 ∈ V ∧ ω ∈ V) → ((𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ (𝒫 𝐺𝑚 ω) ↔ (𝑐 ∈ ω ↦ ran (𝑌𝑐)):ω⟶𝒫 𝐺))
2215, 20, 21syl2anr 494 . . . 4 ((𝜑𝐺𝐹) → ((𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ (𝒫 𝐺𝑚 ω) ↔ (𝑐 ∈ ω ↦ ran (𝑌𝑐)):ω⟶𝒫 𝐺))
2314, 22mpbird 247 . . 3 ((𝜑𝐺𝐹) → (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ (𝒫 𝐺𝑚 ω))
241isfin3ds 9189 . . . . 5 (𝐺𝐹 → (𝐺𝐹 ↔ ∀𝑑 ∈ (𝒫 𝐺𝑚 ω)(∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑)))
2524ibi 256 . . . 4 (𝐺𝐹 → ∀𝑑 ∈ (𝒫 𝐺𝑚 ω)(∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑))
2625adantl 481 . . 3 ((𝜑𝐺𝐹) → ∀𝑑 ∈ (𝒫 𝐺𝑚 ω)(∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑))
271, 2, 3, 4, 5fin23lem35 9207 . . . . . . 7 ((𝜑𝑒 ∈ ω) → ran (𝑌‘suc 𝑒) ⊊ ran (𝑌𝑒))
2827pssssd 3737 . . . . . 6 ((𝜑𝑒 ∈ ω) → ran (𝑌‘suc 𝑒) ⊆ ran (𝑌𝑒))
29 peano2 7128 . . . . . . . . 9 (𝑒 ∈ ω → suc 𝑒 ∈ ω)
30 fveq2 6229 . . . . . . . . . . . 12 (𝑐 = suc 𝑒 → (𝑌𝑐) = (𝑌‘suc 𝑒))
3130rneqd 5385 . . . . . . . . . . 11 (𝑐 = suc 𝑒 → ran (𝑌𝑐) = ran (𝑌‘suc 𝑒))
3231unieqd 4478 . . . . . . . . . 10 (𝑐 = suc 𝑒 ran (𝑌𝑐) = ran (𝑌‘suc 𝑒))
33 fvex 6239 . . . . . . . . . . . 12 (𝑌‘suc 𝑒) ∈ V
3433rnex 7142 . . . . . . . . . . 11 ran (𝑌‘suc 𝑒) ∈ V
3534uniex 6995 . . . . . . . . . 10 ran (𝑌‘suc 𝑒) ∈ V
3632, 13, 35fvmpt 6321 . . . . . . . . 9 (suc 𝑒 ∈ ω → ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) = ran (𝑌‘suc 𝑒))
3729, 36syl 17 . . . . . . . 8 (𝑒 ∈ ω → ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) = ran (𝑌‘suc 𝑒))
38 fveq2 6229 . . . . . . . . . . 11 (𝑐 = 𝑒 → (𝑌𝑐) = (𝑌𝑒))
3938rneqd 5385 . . . . . . . . . 10 (𝑐 = 𝑒 → ran (𝑌𝑐) = ran (𝑌𝑒))
4039unieqd 4478 . . . . . . . . 9 (𝑐 = 𝑒 ran (𝑌𝑐) = ran (𝑌𝑒))
41 fvex 6239 . . . . . . . . . . 11 (𝑌𝑒) ∈ V
4241rnex 7142 . . . . . . . . . 10 ran (𝑌𝑒) ∈ V
4342uniex 6995 . . . . . . . . 9 ran (𝑌𝑒) ∈ V
4440, 13, 43fvmpt 6321 . . . . . . . 8 (𝑒 ∈ ω → ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) = ran (𝑌𝑒))
4537, 44sseq12d 3667 . . . . . . 7 (𝑒 ∈ ω → (((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) ↔ ran (𝑌‘suc 𝑒) ⊆ ran (𝑌𝑒)))
4645adantl 481 . . . . . 6 ((𝜑𝑒 ∈ ω) → (((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) ↔ ran (𝑌‘suc 𝑒) ⊆ ran (𝑌𝑒)))
4728, 46mpbird 247 . . . . 5 ((𝜑𝑒 ∈ ω) → ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒))
4847ralrimiva 2995 . . . 4 (𝜑 → ∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒))
4948adantr 480 . . 3 ((𝜑𝐺𝐹) → ∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒))
50 fveq1 6228 . . . . . . 7 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → (𝑑‘suc 𝑒) = ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒))
51 fveq1 6228 . . . . . . 7 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → (𝑑𝑒) = ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒))
5250, 51sseq12d 3667 . . . . . 6 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ((𝑑‘suc 𝑒) ⊆ (𝑑𝑒) ↔ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒)))
5352ralbidv 3015 . . . . 5 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → (∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) ↔ ∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒)))
54 rneq 5383 . . . . . . 7 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ran 𝑑 = ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))
5554inteqd 4512 . . . . . 6 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ran 𝑑 = ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))
5655, 54eleq12d 2724 . . . . 5 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ( ran 𝑑 ∈ ran 𝑑 ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐))))
5753, 56imbi12d 333 . . . 4 (𝑑 = (𝑐 ∈ ω ↦ ran (𝑌𝑐)) → ((∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑) ↔ (∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) → ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))))
5857rspcv 3336 . . 3 ((𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ (𝒫 𝐺𝑚 ω) → (∀𝑑 ∈ (𝒫 𝐺𝑚 ω)(∀𝑒 ∈ ω (𝑑‘suc 𝑒) ⊆ (𝑑𝑒) → ran 𝑑 ∈ ran 𝑑) → (∀𝑒 ∈ ω ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘suc 𝑒) ⊆ ((𝑐 ∈ ω ↦ ran (𝑌𝑐))‘𝑒) → ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))))
5923, 26, 49, 58syl3c 66 . 2 ((𝜑𝐺𝐹) → ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)) ∈ ran (𝑐 ∈ ω ↦ ran (𝑌𝑐)))
606, 59mtand 692 1 (𝜑 → ¬ 𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wcel 2030  {cab 2637  wral 2941  Vcvv 3231  wss 3607  wpss 3608  𝒫 cpw 4191   cuni 4468   cint 4507  cmpt 4762  ran crn 5144  cres 5145  suc csuc 5763  wf 5922  1-1wf1 5923  cfv 5926  (class class class)co 6690  ωcom 7107  reccrdg 7550  𝑚 cmap 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-map 7901
This theorem is referenced by:  fin23lem41  9212
  Copyright terms: Public domain W3C validator